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ABSTRACT

Significant resources have been spent in collecting and stor-
ing large and heterogeneous radar datasets during expensive
Arctic and Antarctic fieldwork. The vast majority of data
available is unlabeled, and the labeling process is both time-
consuming and expensive. One possible alternative to the la-
beling process is the use of synthetically generated data with
artificial intelligence. In this research, we evaluated the per-
formance of synthetically generated snow radar images based
on modified cycle-consistent adversarial networks. We con-
ducted several experiments to test the quality of the generated
radar imagery. Our experiments show a very good similarity
between real and synthetic snow radar images.

Index Terms—
convolutional neural network, generative adversarial net-

work, ice tracking, radar imagery

1. INTRODUCTION

The melting of polar ice sheets makes a considerable contri-
bution to ongoing sea-level rise and changing ocean circula-
tion, leading to coastal flooding and risking the homes and
livelihoods of tens of millions globally. Recent large-scale
radar surveys of Greenland and Antarctica reveal internal ice
layers on a continental scale enabling accurate detection and
tracing of these internal layers to illuminate many aspects of
ice sheet dynamics, including their history and their response
to climate and subglacial forcing. In this study we have used
snow radar data produced by the Center for Remote Sensing
of Ice Sheets for NASA Operation IceBridge. The snow radar
is a profiling instrument which produces vertical sounding im-
ages of snow layers over ice sheets and ice caps. The radar
signal is sensitive to annual density changes that occur due to
the seasonal transitions from summer to winter; this density
change interface scatters the radar signal which is measured
by the radar’s receiver.

Several semi-automated and automated methods exist for
surface and bottom tracking in radar images [1, 2, 3, 4, 5,
6, 7]. Tracking internal layers is a significantly more diffi-
cult task because of the large number of layers in close prox-
imity. However the traditional techniques which are semi-
supervised and based on feature engineering cannot be scaled

up to big data.
In recent years, deep learning tasks have been developed

for several tasks such as classification [9], object recogni-
tion [10], counting [11, 12], and semantic segmentation [13].
However, these algorithms are limited to cases where large
labeled datasets are available.

The vast majority of data available in the remote sens-
ing community is unlabeled, and the labeling process is both
time-consuming and expensive. One possible alternative to
the labeling process is the use of synthetically generated data.

The standard way for generating synthetic radar data
(such as from a radar depth sounder used to measure ice
thickness) is to simulate the radar scattering response using
digital elevation models (DEM) of the ice surface and bot-
tom. Usually, the DEM is represented by a sheet of points or
facets and the total scattering response is the superposition
of the scattering from all of these targets. This data can then
be processed through the regular radar data processing chain
to produce a simulated radar image. However, data genera-
tion based on a physics simulation is compute-intensive and
cannot be used for generating large data sets.

The goal of this research is to generate synthetic snow
radar images that can be used to train data-driven algorithms
such as deep convolutional neural nets. In this research, we
developed a data-driven machine learning approach, Genera-
tive Adversarial Networks (GANs), for generating synthetic
radar data. A GAN [14] is composed of two simultaneously
trained parts called a generator and discriminator. The dis-
criminator is trained to tell the difference between real and
fake images. The generator is trained to generate realistic-
looking images and fool the discriminator. Both components
improve until the synthetic images are indistinguishable from
the real images. The discriminators accuracy reduces to 0.5,
indicating that is simply guessing when it makes its decision.

For generating synthetic radar images from labeled data
we used a conditional GAN [15]. Figure 1-right shows the
synthetic snow radar image which is generated from labeled
data. Contours show the internal layers of ice sheet. (Figure
1-left),

The CycleGAN network works with two different sets
of images. Each set of images has its own discriminator.
Two different mapping functions are used, called G and F.
Each mapping function translates an image from one set to
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Fig. 1. Generated snow radar image (right) from the label
data representing internal layers of ice sheet (left). The hor-
izontal axis is the flight path and the vertical axis is the ice
depth.

the other. The network works with the intuition that if an
image from one set is translated to the other, and that the re-
sulting image is translated back to the original set, the final
result should be approximately the same as the original. The
difference in these images is termed cycle-consistency loss,
and is what the network tries to minimize.

2. METHODOLOGY

The initial goal inherited from the CycleGAN is to learn the
mapping functions between the two domains X and Y [15].
In the first stage, adversarial loss [14] is applied to asses each
generator that will be responsible for learning one domain:
G : X → Y and F : Y ← X . Additionally each map-
ping function will also be paired with a discriminatorDX and
DY . The adversarial loss [14] for the mapping function can
expressed as [15]:

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]
+Ex∼pdata(x)[log(1− DY (G(x)))],

(1)

where G attempts to generate images G(x) that look similar
to the images of domain Y , while DY will try to discriminate
between the translated samples G(x) and the real samples y.
G’s goal is to minimize this objective against its adversary
D while D will aim to maximize it. Using this we can also
apply it to another mapping function F : Y → X and its
discriminator DX [15]. Using the adversarial loss these net-
works can, in theory, learn mappings G and F that produce
outputs identical to the target domains X and Y if G and F
are stochastic functions [16]. However, with large enough ca-
pacity, a network can map the same set of input images to any
random permutation of images in the target domain, where
any of the learned mappings can induce an output distribution
that matches the target distribution. The cycle constancy loss
is defined according to the following formula:

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖]
+Ey∼pdata(y)[‖G(F (y))− y‖].

(2)

The full objective that is inherited from CycleGAN [15]
is the combination of the two losses with an addition of the λ
parameter that control importance of the losses.

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )
+LGAN (F,DX , Y,X) + λLcyc(G,F ).

(3)

Each of the GAN losses apply mean squared error as the
criterion. Training theG to minimizeEx∼pdata(x)[D(G(x))−
1]2 and train the D to minimize Ey∼pdata(y)[D(y) − 1]2 +
Ey∼pdata(x)[D(G(x))]2 [15]. This proves to be suitable for
images that have larger values or have less discrete values.
Additionally, it is also a suitable criterion for generalization.

For the discriminator we maintain the network used by
CycleGAN [15] which is a convolutional neural network with
five convolutions. Using these residual connections shows
higher stability in unpaired image to image translation, versus
a U-net type network with the skip connections based on an
encoding and decoding pathway. This can lead to instability
with unpaired training due to less information being available.

3. EXPERIMENTAL RESULTS

The images used in this research are CReSIS standard output
products collected with snow radar in 2012. The horizontal
axis is along the flight path and the vertical axis represents
depth. To train the CycleGAN network we used the snow
radar dataset and the ground-truth images which are produced
by human annotators.

Our snow radar dataset includes images of various sizes.
Our dataset is comprised of 2,361 training images and
260testing images and the annotated data associated with
them.

3.1. Qualitative Results

The result of generating synthetic images from ground-truth
labels are displayed in Figure 2. In this figure, the inputs to the
algorithm are labels (left column). The Generator generated
the synthetic images using the input labels (middle column).
The generated synthetic images look very much like real radar
images (right column). Even though all annotated labels have
the same intensity, still generated images can highlight some
layers more than others exactly similar to real radar data. For
example, in Figure 2, the third row shows that the middle lay-
ers are brighter than other layers, even though their labels are
the same brightness (Figure 2-Left). We see the similar pat-
terns in the real image.

When the labeled data contains all of the internal layers,
GAN can create perfect synthetic data. However, our labeled
data is not perfect and there are some missing layers or some
incomplete layers (Figure 3). In this case, our model can gen-
erate some arbitrary lines but usually they do not follow the
same pattern as real images.
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Fig. 2. Label to Image results paired with the actual radar
image (right) for comparison. The input to the network is the
label (left) while it generates the image (middle).

3.2. Quantitative Results

To evaluate our results quantitatively, we include two metrics
namely structural similarity index (SSIM) [17] and peak sig-
nal to noise ratio (PSNR).

The structural similarity index is expressed as [17]:

SSIM(x, y) = I(x, y)∝C(x, y)βS(x, y)γ , (4)

where I is luminance, C is contrast, and S is structure [17].
The SSIM attempts to model the structural change of an
image by comparing small windows or sub-samples in the
image to compare the luminance, contrast, and structure of
the two images [17]. This metric gives us a robust measure
of the perceived changes in the image. The closer the SSIM
is to 1.0 the higher the quality image we have [17]. Another
evaluation metric is peak signal to noise ratio (PSNR) or
signal to noise ratio (SNR) which is commonly used in the
signal processing area as an image quality metric. PSNR is
expressed as [18]:

PSNR = 10 log10
2552

〈n(x, y)2〉
, (5)

where 〈n(x, y)2〉 gives mean square error [18]. The higher the
PSNR (in dB), the better the quality of the generated image.
Using these two metrics we can show how well the generated
synthetic images look like the real images.

SSIM and PSNR values are depicted in Table 1. The max-
imum SSIM value is close to 1 which means two sets of im-

ages are very similar for some images. However the average
value is quite low due to missing layers in our labeled dataset.
PSNR is usually around 20 dB for the visible images gen-
erated by GAN algorithm. PSNR for Radar imagery is usu-
ally between 25–30dB. This shows that our generated images
have similar noise content and comparable image quality to
real radar imagery.

Fig. 3. Generating images with missing labels- Label to Im-
age results paired with the actual radar image (right) for com-
parison. The input to the network is the label (left) while it
generates the image (middle).

Table 1. Evaluation results
Min Average Max

SSIM 0.363 0.569 0.721
PSNR 11.22 21.18 28.67

4. CONCLUSION

Here we developed an architecture based on the CycleGAN
network to generate synthetic snow radar images. This
method can also be used to generate other types of radar
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images. We conducted several experiments for testing the
generated synthetic images based on qualitative similarity
metrics. Similarity metrics demonstrate a good statistical
proximity of AI-generated results to the real radar data. Mov-
ing forward we explore the combination of AI and physics
simulators for a more realistic radar data simulator.
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