
SNOW RADAR LAYER TRACKING USING ITERATIVE NEURAL NETWORK APPROACH

Oluwanisola Ibikunle 1, John Paden 1, Maryam Rahnemoonfar 2,David Crandall 3, Masoud Yari 4

1. Center for Remote Sensing of Ice Sheets, University of Kansas, Kansas, USA.
2. Department of Information Systems, University of Maryland, Baltimore County, Maryland, USA
3. Luddy School of Informatics, Computing, and Engineering, Indiana University, Indiana, USA.

4. Department of Computer Science, Texas A&M University-Corpus Christi, Texas, USA.

ABSTRACT

This paper presents preliminary results using a fully con-
nected neural network (NN) to automatically track the in-
ternal layers of snow radar echograms using an iterative
”row-block-column” approach. Snow radar images, when
accurately tracked, provide relevant information for estimat-
ing snow accumulation rates in polar regions which is a key
measurement needed to understand and predict the impact of
climate warming in Greenland and Antarctica. A multiclass
NN was designed and trained with a training set of 121,408
columns of simulated snow radar data and learns to automat-
ically track the internal layers with an accuracy of 92.8%, a
RMSE of 0.24 pixels, and with 98% of pixel errors less than
or equal to 1 pixel.

Index Terms—
neural network, radar images, automatic tracking, ma-

chine learning, multiclass classification

1. INTRODUCTION

The snow radar [1], developed by the Center for the Remote
Sensing of Ice Sheets (CReSIS), has a vertical resolution of
<4 cm in snow and is used to measure annual snow fall by
tracing annual layers in echograms [2]. Fig. 1 shows an ex-
ample radar echogram from the middle of the Greenland ice
sheet where the horizontal layers are clearly visible under-
neath the ice surface. In this work we propose a method to
automate the tracking of these layers.

We propose a simple iterative approach that breaks an in-
put echogram sequence into row blocks each containing at
least one layer and using multiple columns of this as input to
a NN. The NN iteratively detects the layers in an echogram
one layer at a time until all the layers have been detected. We
show preliminary results of this algorithm on simulated data.
Although the simulated data we use do not contain some of
the complicating image features of real snow radar data, these
initial tests indicate this as a promising approach to pursue at
least in part because of the simplicity of the algorithm and to

Work supported by NSF IIS-1838236 and ACI-1443054.

Fig. 1. Snow radar echogram with annual layers. Air-ice sur-
face is at 0 m on the depth axis.

use as a benchmark to compare against more capable NN [3]
[4].

2. METHODOLOGY

2.0.1. Iterative Column Layers Approach

An echogram image consists of columns which always con-
tain the air-ice surface and may contain internal snow layers
underneath the surface. The first layer is always the ”surface”
and it is the signal return from the interface between the air
and the snow while deeper layers beneath this are the inter-
nal layers. The surface layer is easy to track using a simple
threshold method since it is the first scattering return in each
column and can be aided with existing digital elevation mod-
els of the surface. We use an iterative approach for detecting
the internal layers of the snow radar echogram starting with
the known surface layer. This approach uses the tracking in-
formation of the preceding layer (starting with the surface)
to detect the next layer using only the next few rows of the

2960978-1-7281-6374-1/20/$31.00 ©2020 IEEE IGARSS 2020

IG
AR

SS
 2

02
0

- 2
02

0
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e
an

d
Re

m
ot

e
Se

ns
in

g
Sy

m
po

siu
m

 |
 9

78
-1

-7
28

1-
63

74
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IG
AR

SS
39

08
4.

20
20

.9
32

39
57

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 13,2021 at 19:40:38 UTC from IEEE Xplore. Restrictions apply.

echogram.
Given an echogram image (Fig. 2) and the surface infor-

mation, the second or next layer can be extracted by grabbing
the pixels in the rows directly beneath the surface. We term
these extracted pixels as a row block since it is roughly paral-
lel with the rows. It is not perfectly parallel, since it follows
the layer above that defines it. The third or subsequent layer
is in the next few rows after the second layer and can be ex-
tracted by grabbing the pixels in the rows beneath the second
layer. We pose the tracking problem as an iterative detec-
tion problem which is solved one layer at a time using “row
blocks”. An example of forming the first two row blocks of
an image is shown in Fig. 2. The number of rows in each row
block (Nrb) is chosen to be large enough so that the next layer
occurs within the row block otherwise the algorithm will not
be able to track the next layer. It may be that part of an even
deeper layer (e.g. the next layer after the next layer) could be
included in the row block and the NN will need to learn how
to ignore these deeper layers and only track the next layer.
Nrb was manually chosen by us based on the typical layer
spacing. The example in Fig. 2 only shows row blocks with
a single layer in each row block; if the number of rows in
each row block had been increased, then part of layer 2 would
have shown up in row block 1. The reason for restricting the
number of rows in each row block (e.g. to Nrb = 5 rows
in Fig. 2) is to reduce the size of the NN and therefore the
learning time of the NN. However, this must be balanced with
the need for Nrb to be large enough to always ensure that the
next layer will be completely contained in the row block.

Fig. 2. Echogram matrix divided into row blocks

Using the information of the first layer traced out, the next
row block is deduced. This is then used to trace out the next
layer and this continues until the algorithm no longer finds a
layer in the echogram. To trace out a layer from a selected row
block, we further break the row block into columns and solve
for the layer in each column independently of the solution
for all the other columns. Each individual column solution is
trained to depend on a fixed number of neighboring columns.

Fig. 3. Each row block is processed so that the solution of
each column is determined independently of the solution to
any of the other columns

2.1. Neural Network

To identify the location of a layer in each column, we de-
signed a multiclass classification NN where the classes are the
rows of the selected column and only one row of the selected
column is allowed to contain the layer. This is a reasonable as-
sumption for snow accumulation layers since they never fold
in on themselves. For each column, we train the NN to output
the most probable row containing the layer. We also include
a no-layer class so that the NN can learn to recognize when
there is no layer.

For training, the ground truth and number of layers in each
echogram were provided and the network was trained to iden-
tify the last or deepest layer of an echogram by classifying the
last row block after all the layers have been traced as belong-
ing to the no-layer class. However, during testing, only the
surface information is provided. Using the surface informa-
tion, the first layer of each echogram is traced and this result
is used to form the row block of the next/second layer and this
process continues until no further layers are found by the NN.
Errors in one layer may therefore cause deeper layers to not
track as well because the row block will have errors in it.

To handle the termination condition, the number of
columns in the current row block predicted by the NN as
no-layer is checked against a threshold such that if the num-
ber of columns classified as no-layer exceeds this threshold, it
is assumed that all the layers have been traced; consequently,
the search for layers in the current echogram is then halted.
In the instance where there are no-layer columns but less than
this threshold, the iteration process for the next row block is
no longer well defined since it is not clear which pixels are
needed to form the columns of the next row segment. Linear
interpolation was used to fill in columns which have missing
layers for generating the next row block and the iterative
search for layers continues until the threshold is exceeded.
If extrapolation was required (e.g. if an edge column had a
missing layer), then nearest neighbor extrapolation was used
rather than linear interpolation.

2.2. Neural Network Input

To solve for each column, the input to the multiclass NN is
the column and the neighboring Ncols columns to the left and

2961

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 13,2021 at 19:40:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. NN input for columns 2 and 3 of row block 1 us-
ing neighboring columns (1-3) and columns (2-4) as inputs
respectively.

right. Fig. 4 illustrates this with Ncols = 1 column to the left
and right but for our experiment, Ncols = 7.

For columns near the edge, we mirrored neighboring
available columns (see Fig. 5) to form the complete set of
columns which are used as the input to the NN.

Fig. 5. Columns at the edge (Col 1 and 4) mirror their neigh-
bors (Col 2 and Col 3 respectively) to form the NN input.

2.3. Architecture of the Neural Network

A fully connected NN with three layers: one input, single
hidden layer and an output layer was designed.

As described, the input, x, consists of Nrb × Ncols
pixels. The training set, Xm = (x1, x2, .., xM), consists
of the inputs for M columns. The associated outputs,
Ym = (y1, y2, .., yM), are the known ground truth labels
of the row containing the layer for each input column of
the training set. Each output represents a multiclass where
ymε{no-layer, 1, .., Nrb}.

We define j = (j1, j2, .., jL) as the L = 3 layers of the
network from input layer j1 to output layer jL. Each layer
contains nodes i = (i1, i2, .., iN) and the network learns the
optimum weights Θ(j) that maps from layer j to layer j + 1.

The sigmoid activation function, given by

g(z) = 1/(1 + exp−z), (1)

is used in layer 2 to compute the activation of the units i in
layer j as

a
(j)
i = g(Θ

(j−1)
i0 x0 + Θ

(j−1)
i1 x2 + ...+ Θ

(j−1)
iN xN). (2)

The output layer activation is similarly computed as

h
(n)
θ (xm)=a

(L)
i =P (y=n|x;θ)=g(Θ

(L−1)
i0 x0+...+Θ

(L−1)
iN xN). (3)

The network prediction for each column is
softmaxi(h

(i)
θ (x)).

2.4. Regularized Cost Function and Backpropagation

A regularized logistic regression cost function is computed
for the entire training set as

J(θ) = (1/M)

M∑
m=1

Nrb∑
k=1

[
−y(i)

mklog
(
h

(k)
θ

(
x(i)
m

))
−(1− y(i)

mk)log
(

1− h(k)
θ

(
x(i)
m

))]
+ λ/2M

[
N∑
i=1

M∑
m=1

(
Θ

(L−1)
i,m

)2

+

N∑
i=1

Nrb∑
k=1

(
Θ

(L)
i,k

)2
]
.

(4)

where M = number of training examples, Nrb = number
of rows in each row block which is equal to the number of
neurons in the output layer, N = number of nodes in a layer,
andL = number of layers in the NN. Backpropagation is used
in the optimization and a regularization term controlled by λ
in (4). The optimization is done using the fmincg conjugate
gradient descent algorithm from Matlab. The optimization
goal is to find the weights which minimize the overall cost
function.

3. EXPERIMENTAL RESULTS

The training set contains 800 simulated snow radar echograms
which corresponds to 121,408 columns from all the row
blocks. The NN was trained on a 128 GB, 3.3 GHz, 8-core
Red Hat Enterprise Linux server using Matlab. The simulated
1000 by 256 echogram matrices were decimated to 125 by 64
to reduce the number of inputs and outputs of the NN to keep
the training tractable.

For testing, 200 simulated echograms with known surface
were created. Using the surface information, the first layer
of each echogram was traced and this was used to form the
row block for the next/second layer and this process continued
until the termination condition was met.

The following a priori information and hyper-parameters
were used: the number of rows in a row block Nrb = 16, 15
neighboring columns (Ncols = 7 to the left and right) for each
column of the row block, number of NN layers L = 3, num-
ber of nodes in hidden layer N = 50, no-layer termination
threshold γ = 0.5, and a regularization term λ = 50.

An example input image is shown in Fig. 6 along with
ground truth labels. The NN layer tracks for this image are
shown in Fig. 7. Overall, an accuracy of 92.8 % was achieved
with an RMSE of 0.24 pixels. Only about 2% of the pixel
errors were greater than 1 pixel. Accuracy here is defined
as the percent of the NN predictions that exactly match the
ground truth. In other words, the percentage of columns in
the test data that the NN predicted the correct row/no-layer
state. Several output situations may occur that might affect

2962

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 13,2021 at 19:40:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Simulated snow radar echogram with labeled internal
layers

accuracy. First, if a layer is missed during prediction, but the
following layer is tracked, then the “wrong” layer would be
compared and the errors would be large for that layer and
probably for deeper layers as well since the iterative process
would likely be off one layer for every layer after this. Sec-
ond, if an extra layer is tracked/hallucinated, then again the
“wrong” layer would be compared so that layer and deeper
layers would have large errors. Third, the tracker could termi-
nate early (i.e. estimate that there is no layer when there is a
layer). In this case the deeper layers would not be compared.
In this experiment, none of these conditions occur, but we
envisage these behaviors when applied to real data, layers
which are sufficiently thin or thick, and low signal to noise
ratio (SNR) data.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we present preliminary results of a novel itera-
tive NN approach to automatically track the internal layers of
a snow radar echogram one layer at a time. Although these re-
sults are on simulated data, processing of echograms collected
during the NASA Operation IceBridge Mission is underway.
We also plan to add convolutional layers to the NN and add
memory into the network since layer tracking lends itself to a
recurrent CNN framework.

5. REFERENCES

[1] F. Rodriguez-Morales, D. Gomez-Garcia Alvestegui,
E. J. Arnold, R. D. Hale, S. Keshmiri, C. J. Leuschen,

Fig. 7. Same image showing automatically tracked internal
layers of the echogram

J. Li, J. D. Paden, and C. Cardenas, “Radar systems
for ice and snow measurements onboard manned and
unmanned aircraft,” IEEE Latin America Transactions,
vol. 16, no. 9, pp. 2473–2480, 2018.

[2] L. S. Koenig, A. Ivanoff, P. M. Alexander, J. A. MacGre-
gor, X. Fettweis, B. Panzer, J. D. Paden, R. R. Forster,
I. Das, J. R. McConnell, M. Tedesco, C. Leuschen,
and P. Gogineni, “Annual Greenland accumulation rates
(2009-2012) from airborne snow radar,” Cryosphere,
vol. 10, no. 4, pp. 1739–1752, 2016.

[3] I. O. L. K. Maryam Rahnemoonfar, John Paden and
L. Montgomery, “ Smart Tracking of Internal Layers of
Ice in RadarData via Multi-Scale Learning,” IEEE Inter-
national Conference on Big Data, 2019.

[4] I. O. L. M. L. K. Maryam Rahnemoonfar, John Paden, “
Deep Multi-Scale Learning for Automatic Tracking of In-
ternal Layers of Ice in Radar Data,” submitted to Annals
of Glaciology for International Glaciological Society In-
ternational Symposium on Five Decades of Radioglaciol-
ogy, 2019.

2963

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 13,2021 at 19:40:38 UTC from IEEE Xplore. Restrictions apply.

