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ABSTRACT

In this work we explore a combination of methods that
allow us to analyze and study hyper-local environmental phe-
nomena. Developing a unique application of monoplotting
enables visualization of the results of deep-learning object de-
tection and traditional object tracking processes applied to a
perspective view of a parking lot on aerial imagery in real-
time. Additionally, we propose a general algorithm to extract
some scene understanding by inverting the monoplotting pro-
cess and applying it to digital elevation models. This allows
us to derive estimations of perspective image areas causing
object occlusions. Connecting the real world and perspective
spaces, we can create a resilient object tracking environment
using both coordinate spaces to adapt tracking methods when
objects encounter occlusions. We submit that this novel com-
posite of techniques opens avenues for more intelligent, ro-
bust object tracking and detailed environment analysis using
GIS in complex spatial domains provided video footage and
UAS products.

Index Terms— photogrammetry, homography, computer
vision, object detection, object tracking

1. INTRODUCTION

Hyper-local environments are complex, spatially constrained
areas. A single floor of a building, a building itself, or a uni-
versity campus could each be considered a hyper-local en-
vironment. Within these areas, any number of spatially rele-
vant phenomena, such as building evacuations, can occur. Our
goal is to capture and visualize these phenomena on an aerial
image for enhanced situational awareness. Typically, aware-
ness of this kind is achieved using security cameras. How-
ever, raw video footage usually requires human interpretation
to understand its content and any effects beyond its immediate
scope.

To reduce video information complexity to a model-able
form requires us to combine several established methods. We

build upon the concepts of Bozzini et al’s monoplotting work
[1] used for visualizing land cover changes from perspective
imagery as GIS polygon geometry. We extend that inter-
face by replacing the perspective imagery with video. Deep-
learning object detection applied to said video is combined
with an evaluation of multiple traditional tracking methods,
whose outputs are recorded as points and lines. The trans-
formed outputs can be used to visualize movement behavior
on aerial imagery in real-time. This can provide first respon-
ders and resource management personnel a simulated birds-
eye view of day-to-day operations or disasters as they unfold,
increasing their situational awareness.

Object occlusion remains a barrier for our application. To
that end, we compose a novel algorithm using monoplotting
inputs to estimate occlusions explicitly in accompanying per-
spective video. This allows us the option to extend our detec-
tion and tracking platform by defining additional behaviors to
follow when an object encounters an occluded region.

Our ongoing tests occur at Texas A&M University Cor-
pus Christi (TAMUCC), USA, in a long-term effort to under-
stand how the layout of road travel directions, temporary bar-
riers, and crosswalks affect pedestrian and vehicular traffic.
We believe this initial work is a novel combination of remote
sensing, computer vision, and GIS principles which we can
expand in the future to accomplish this ultimate goal.

2. RELATED WORKS

2.1. Monoplotting

The foundation for this project is the concept of monoplot-
ting, the less well-known cousin of stereo-photogrammetry.
This single-image photogrammetry method has been typi-
cally used for plotting historical images onto current ortho-
metric maps or aerial orthophotos to visualize topographical
changes over time, such as environmental phenomena like
the growth of a forest or terrain elevation changes [1, 2].
Traditional monoplotting normally requires a recorded cam-
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era POSE, at least one calibrated camera image (though two
are preferable), an aerial orthophoto, and an accompanying
digital elevation model (DEM)[1].

There are several well defined relationships that can be
leveraged to reconstruct complete or partial POSE parameters
[3] given a series of known points in a pair of images. Com-
puting an image homography also provides us the parameters
of relative camera POSE between aerial and perspective im-
ages. Homographies can be adjusted for imprecision error via
iterative least squares adjustment [1]. Incorporating the DEM
with the aerial orthophoto, we can also derive transformation
parameters from 3D-2D space, where the 2D perspective im-
age maps back into 3D world space coordinates [1].

2.2. Object Detection & Tracking

Often issues in object variation (lighting, scale, deformation,
etc.) preclude perfectly accurate object detection and track-
ing. Incorporating the YOLO framework [4] handles most
variable presentation aspects. YOLO’s flexibility on input
size and speed makes it a natural choice over the RCNN fam-
ily, especially over an eclectic mix of smaller input images.
Subsequently, we explore the efficacy of several traditional
tracking algorithms: Track-Learn-Detect (TLD), Kernalized
Correlation Filters (KCF), and Multiple Instance Learning
(MIL) [5, 6, 7] on the outputs of the YOLO network.

3. DATASETS

Perspective video was provided by the TAMUCC Univer-
sity Police Department. For this initial work we analyzed a
1280x720 video file at 20 frames per second from an AXIS
Q6044-E PTZ Dome Network Camera. The camera was held
mostly in a static POSE. Aerial imagery products of campus
provided by the Measurement Analytics Lab at TAMUCC
were generated from a fixed-wing UAV (Sensefly eBee) plat-
form with an RGB camera. The orthophoto and DEM were
dervived from a point cloud generated using Structure-from-
Motion over a masked area of the parking lot with a ground
sample distance of 2.79cm.

The applied YOLO network was trained on a subset of
PASCAL VOC 2007 & 2012 data, specifically on the classes
of people, cars, and motorbikes. This allows us to reduce
some model overhead for increased performance.

4. METHODS

We stretch the limits of prior monoplotting work by starting
with the most complex case of input sources available to us: a
perspective view, wall-mounted video camera with no known
world-space coordinates or calibration data. We were able to
avoid using external measurements as inputs during the regis-
tration of perspective imagery with aerial orthophoto, allow-

ing us to validate our results using a total station and avoiding
some measurement bias.

Fig. 1. Processing Methodology

4.1. Required Inputs

Several inputs are necessary in combination with the perspec-
tive video footage, and the processing flow is visualized in
Figure 1:
• Keypoints: 400 point pairs used to compute image homog-

raphy collected by hand as our results applying Shi-
Tomasi corner detection [8] were surprisingly sparse.

• Registrations: homography parameters are computed indi-
vidually from perspective to aerial and vice versa (in-
verted) using the keypoints.

• Working Area Geometry: used to check the accuracy of a
registration and create a mask of the working area in
the perspective image containing physical occlusions.

• Regions Of Interest (ROIs): areas around the perspective
view periphery where track-able objects are likely to
pass entering or exiting the frame.

Fig. 2. Registration Overlay: The perspective image trans-
formed onto the the aerial image.
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4.2. Image Transformations

The process of deriving image transformations applies image
homography and is iterated upon with several collections of
keypoints, increasing in volume starting with 8 keypoints and
doubling until we encompass all 400 points. The efficacy of
each transformation is evaluated by measuring the difference
of known points in the image with where they should align on
the aerial orthophoto, an example of which is shown in Figure
2.

4.3. Occlusion Masking

To account for occlusions during object tracking, we estimate
occlusion locations in the perspective view by transforming
the DEM with an inverted image homography. This allows
us to overlay the elevation values present in the DEM onto
the perspective plane accurately. Thresholding elevation post-
transformation in Figure 3 provides us a lower limit of oc-
cluded areas. The upper limit can be determined by com-
puting the offset from the lower limit based on the elevation
value. In the widest bounding envelope including these limits,
a Hough Transform generates lines filtered by the best pair
matched by angle relative to vertical and proximity. Point
intersections of all boundary lines form polygons which are
clipped by the defined working area to eliminate extraneous
geometry, shown in Figure 4a.

Fig. 3. The transformation of the DEM into the perspective
image plane.

5. RESULTS

5.1. Registration Accuracy

We compute registration accuracy as the maximum value of
deviation between identifiable points using the standard dis-
tance equation:

D =
√
(x2 − x1)2 + (y2 − y1)2

Registration points nearest the origin are such that their de-
viation is negligible. As distance from the camera increases,

registration accuracy decreases, visible in Figure 2 as crooked
lines and disjoint connections. The highest recorded devia-
tion across all registration iterations was ∼3.5m at the farthest
ends of the 118 × 93m parking lot from the camera origin,
∼3% transformation error at worst. Notably, deviations are
not linear. We theorize their cause is image imperfections due
to the intentional lack of camera calibration and/or distortion
caused by the weather dome.

(a)

(b)

Fig. 4. Detection and Tracking Results with Occlusion Mask.
a): Perspective View of Detection and Tracking Algorithm
With Detected Occlusion Areas. b): Aerial View of Detection
and Tracking Algorithm

5.2. Occlusion Extraction

In our test case, our occlusion extraction method could iso-
late 12/13 vertical occlusion areas present in the image, at a
92% detection rate with ∼88% accurate fill rate. That is, the
polygons drawn contain ∼88% occlusion pixels and ∼12%
non-occluding pixels. However, being the only case in which
this algorithm has been tested, we defer judgement regarding
general efficacy.
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5.3. Detection & Tracking Accuracy

In over six hours of reviewed video, YOLO detected every ve-
hicle which passed through designated ROIs around the per-
spective view periphery. An optimization was made to detec-
tion operations by only calling them as movement-areas com-
puted in ROIs began to decrease. This corresponded to a ma-
jority of instances where vehicles would present themselves
best for detection. Tentatively, we would rate this applica-
tion of YOLO as 99.99% accurate at object detection, whose
outputs were passed to the tracking algorithms we evaluated.

Table 1 outlines performance of existing tracking methods
available on OpenCV and our own variation on Lucas-Kanade
optical-flow. Our variation performs k-means clustering on
the detected features between frames and drops points which
become stuck on similar features and exceed a distance limit.
We define tracking accuracy as lock persistence on a set of
14 vehicles traveling radically different paths until they exit
view. Global denotes tracking context in the entirety of the
frame, while Patch denotes a moving window around tracked
objects as a subset of the frame.

Table 1. Tracking Algorithm Performance*: At the time of this
writing the TLD implmentation in OpenCV was not stable under Patch track-
ing. Value is a conservative estimate from what data could be recorded.

Tracker

Global & Patch
FPS with
Coord.

Transforms

Global & Patch
Tracking
Accuracy

TLD 8, 16* 79%, 65%*
KCF 40, 70 58%, 58%
MIL 6, 12 65%, 65%

Optical-flow 70, 60 85%, 85%

6. CONCLUSIONS & FUTURE WORKS

We conclude that this is a valid approach for accomplishing
our outlined goal of integrating video data with UAS prod-
ucts based on the relatively low degree of registration error
over a comparatively large area. Theoretically it is possible
to near-fully automate the processing workflow, however we
are curious to investigate adapting alternative methods, such
as Boerner’s work on automatically computing camera POSE
[9] to fully automate image registration. Similarly, regions
of interest in perspective images combined with shapefiles of
travel networks could isolate ROIs for vehicle detection algo-
rithmically. We also plan to test the system with continually
reduced image quality, in order to determine the minimum re-
quirements where this system could operate with a negligible
degree of uncertainty. As an alternative to traditional track-
ing mechanics, we also look to incorporate other in-progress
work based on Bertinetto et al’s [10] study of generic object
tracking using Siamese networks.
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