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Abstract—Artificial intelligence (AI) techniques have displayed
impressive success in many practical fields. Deep neural networks
(DNNs) owe their success to the availability of massive labeled
data. However, in many real-world problems, even when a large
dataset is available, deep learning methods have shown less
success, due to causes such as lack of large labeled dataset,
presence of noise in data, or missing data. In the present work,
we intend to examine the application of deep learning methods
on radar data gathered from polar regions. Our goal is to track
internal ice layers in radar imagery. In such data, the presence
of noise is one of the main obstacles in utilizing popular deep
learning methods such as transfer learning. Our experiments
show that if the neural network is trained to detect contours
of objects in electro-optical imagery, it can only track a low
percentage of contours in radar data. Fine-tuning and further
training do not provide any better results. However, we will show
that selecting the right model and training the model on the radar
imagery from the base, is going to yield far better results. We
also discuss another possible learning approach that can save us
time for data annotation.

Index Terms—hidden layers, ice layer tracking, deep learning,
multi-scale learning

I. INTRODUCTION

The advancement of artificial intelligence (AI) techniques

in recent years has had a great impact on our approaches to

data analysis. Deep learning, in particular, has shown great

success in many areas of practical interest such as classi-

fication [1]–[4], object recognition [5], [6], object tracking

[7], counting [8]–[10], and semantic segmentation [11]–[14].

Despite their progress, these algorithms are limited mainly to

optical imagery. Non-optical sensors such as radar present a

great challenge due to coherent noise in the data. The goal of

this work is to test the capability of deep neural network in

tracking the internal layers of ice.

We analyze snow Radar [15] images produced by the

Center of Remote Sensing of Ice Sheets for NASA Operation

IceBridge. The snow radar is a profiling instrument which

produces vertical sounding images of snow layers over ice

sheets and ice caps. The radar signal is sensitive to annual

density changes that occur due to the seasonal transitions

from summer to winter; this density change interface scatters

the radar signal which is measured by the radar’s receiver.

Several semi-automated and automated methods exist for sur-

face and bottom tracking in radar images [16]–[23]. Tracking

internal layers is a significantly more difficult task because

of the large number of layers in close proximity. Panton

[24] provided a semi-automatic method for tracing internal

layers in radio echograms, but did not apply the algorithm

on a large dataset. MacGregor et al [25] developed a semi-

automated layer tracker for the CReSIS radar depth sounder,

in which the operator could use either a phase coherent

method based on signal processing or the method described in

[30]. MacGregor’s team applied this semi-automated approach

to several seasons of data in the first large scale effort to

do internal layer tracking. Even using the semi-automated

method, the task took several years to complete. Koenig et

al. [26] and Medley et al. [27] have tracked these interfaces

and used the tracked layers to measure annual snow fall over a

large area. Since annual snow fall is critical to understanding

how the ice sheet has and will respond to a changing climate,

tracking the layers provides a valuable dataset which can be

used to understand and improve atmospheric models. Koenig

et al [26] applied a semi-automated layer tracker to several

seasons of CReSIS snow radar data. Layers that were visible

yet less detectable were too difficult to task, but even when

constrained to the easier layers the task is still time consuming.

Since the techniques are not able to detect all internal layers

and are not fully automatic, they cannot be easily scaled up

to big dataset for routine application.

Most traditional approaches to edge and contour detection

problems fundamentally make use of image spatial derivative

operators. Since the derivative operators possess high-pass

characteristics of the image, they can effectively enhance

edges in an image and make them more pronounced. The

downfall of the derivative operator, however, is that they are

susceptible to noise. Now in order to reduce the sensibility of
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derivative operators to noise, one can employ regularization

filters, such as a Gaussian filter. Traditional edge detectors,

such as canny [28] and the Marr-Hildretch [29], are prime

examples of edge detectors that combine regularization with

derivative operators. Such methods can generate edge maps

in different spatial scales as they apply different bandwidths.

Consequently, in large scales, the edge maps tend to capture

the low frequency characteristics and global information, while

being less sensitive to noise. However, in smaller scales, they

are more sensitive to noise as the edge maps tend to capture

details of an image or high frequency information.
Pioneer learning based methods utilize supervised models

with hand-crafted features. We refer the reader to [30] and

references therein.
In this article we experiment with a deep learning technique

that has shown great success in other areas of computer

vision. We are particularly interested in Holistically-Nested

Edge Detection (HED) models, introduced in [31]. We will

discuss this in more details in Section II. The basic framework

of HED is the same as VGGNet architecture, and it uses the

parameter of VGGNet trained on the ImageNet dataset. One

difference between the two architectures is that HED does

not use the final fully convolution layers. This will allow us

to use various sizes images for our training. However, the

fundamental difference of HED, with regard to its architecture,

is that it introduces the so-called side-outputs which are

outputs of some intermediate layers. During training, it uses

the side-outputs of five convolutional layers, and a fusion

output. The latter, which is generated by fusing the five side-

outputs, provides the final predictions of the model. In the next

section we will describe the mathematical foundation of the

multi-scale learning. In section III, and IV we will describe the

experimental results and evaluation of our results and finally

we draw the conclusion in section IV.

II. METHOD

We denote the original data in our training dataset by

X = {Xn : n = 1 . . . N}, where N is the size of the

dataset; we also denote the corresponding boundary data by

Y = {Yn : n = 1 . . . N}. The HED model pulls out M

side-outputs by Y
(m)
n for m = 1 . . .M , and a final output

of the weighted-fusion layer, denoted by Ỹn. The model

includes M image-level loss function at each side-output layer,

dentoed by �m for side-output m, and a loss function at the

fusion layer, dented by �f . We denote all parameters of the

classifier associated with the mthside-output by θm. Then the

loss function �m is defined as a class-balanced cross-entropy

function as in equation 1

�m = �m(θ0, θm) = −β
∑
j∈Y +

logPr(yj = 1|X; θ0, θm)

− (1− β)
∑
j∈Y−

logPr(yj = 0|X; θ0, θm), (1)

where θ0 represents all other standard network layer parame-

ters, Y−and Y+ are the edge and non-edge labels respectively

and β = |Y−|/|Y |. The loss function for the final fusion layer

is defined by

�f (θ, w) = CE(Y, Ỹ ), (2)

where CE is a cross-entropy loss function that measures

dissimilarities of the fused prediction and the ground truth

label; θ = (θ0, θ1, . . . , θm), and w = (w1, . . . , wm) represents

the fusion weights. Putting everything together, the goal is to

minimize the following objective function via standard (back-

propagation) stochastic gradient descent:

(θ, w)∗ = argmin

(
�f +

M∑
m=1

�m

)
(3)

We use a mini-batch gradient descent that computes the

gradient of the cost function with respect to the parameters θ
for the entire training dataset: θ = θ − η∇θL(θ, xI , yI) Here

we used the symbol θ for all parameters. This minimization

approach is based on Nesterov accelerated gradient technique

as discussed in [32]:

vt = μvt−1 + η∇θL(θt−1 − μvt−1), (4)

θt = θt−1 − vt

where μ ∈ [0, 1] is the momentum and η > 0 is the learning

rate, see [32].

Input images are not resized for training or testing. Since we

get the side-ouputs right before applying the max pooling, the

size of the first output matches with the original input size.

But after applying the max pooling in the step, the second

side-output is half the size of the first side-output; likewise,

each subsequent side-output is going to be half the size of the

previous side-output. Therefore, each side-output is generated

at a different scale.

III. EXPERIMENTAL RESULTS

Our labeled data set of ice radar imagery, ICE2012 consists

of 2360 train images and 260 test images. In the training

process, we have used the following parameters γ = 0.1,

learning rate η = 10−6 and the momentum μ = 0.9 (see

[33]). We have also used weight decay rate of 2× 10−4.

We present the results of three successful experiments that

we carried out:

1) transferred VGG16 parameters, continued training on

BSDS500 with augmentation (for instance, see Fig.1)

2) train the model on ICE2012 with a normal distribution

initialization (for instance, see Fig.1)

3) train the model on synthetic ice dataset (SYNT ICE)

In the first experiment, we trained the network on BSDS500

data and its augmentation. The model initialization was based

on VGGNet which was trained on ImageNet. We used the

same hyper parameters as used in [31] and trained for 10

epochs. We achieved almost the same accuracy as the authors

on BSDS test set. Then we applied the trained model on our

test data. We used a similar approach for evaluation of our

results as in [31]. As shown in Fig.1b the results are not very

impressive.
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(a) (b) (c) (d) (e)

Fig. 1. (a) The original image. (b) The result of training on augmented BSDS500. (c) The result of training on synthetic data. (d) The result of training from
scratch on ICE2012. (e) Human labeled edges.

(a) (b)

(c) (d)

Fig. 2. The test result of the model trained on ICE2012: (a) the original
Image (b) the prediction result (c) the non-maximal suppression result (d) the
ground Truth.

We argue that the presence of noise in radar imagery, such

as our data; makes it almost impossible to use transfer learning

methods to detect the edges in our dataset. Fig.1b shows

the output of the HED model which is trained on BSDS500

with VGGNet initialization. We trained HED on BSDS500 to

achieve the same accuracy as the authors in [31]. However, as

one can see in Fig.1b, the results are not good. The quantitative

results are presented in Table I. we did further experiments

with transfer learning techniques, but all of them failed to

converge. For instance, we transferred VGG16 parameters and

continued training on our own dataset, ICE2012. In another

experiment , we transferred VGGNet parameters, continued

training on BSDS500 with augmentation, and continued train-

ing it further on ICE2012. Both experiments failed to converge.

In fact both algorithms diverged in very early stages. This is

due to the presence of noise in images.

The second experiment produced a relatively better result.

We trained the model on a synthetic data set of 1000 images.

The synthetic dataset uses a simple linear superposition

radar model for the scattering. Each image is produced using

a layer thickness model generated with a smoothed Gaussian

random process. The thicknesses are summed one of on top

of another starting from a flat surface. Each layer is created

by summing the contribution of 100 complex (magnitude

and phase) randomized targets spread slightly in range to

create thickness to the layer. The slight spreading in range

is generated from an exponential distribution to simulate the

backscatter fall-off from each layer as a function of incidence

angle. The signal power of each layer follows an exponentially

decay with depth so that deeper layers have weaker signals.

The simulator has not been tuned to match the actual snow

radar data statistics, but these preliminary results demonstrate

that if we can generate more synthetic data with a more

complicated noise generator which better matches the snow

radar data, we should be able to achieve much better results.

This is a subject of our future work.

The third experiment is conducted on our real dataset,

ICE2012, with a random initialization. We notice a consid-

erable improvement in our results. Fig.1 d,e show a sample

data and the manually annotated ground truth contours side

by side of the results of our three experiments. The evaluation

results for approach1 through 3 are summarized in Table I.

As discussed in some other resent works, in fact, deep

learning models are unstable in the presence of noise. We can

witness the same phenomena once again in our experiments.

As shown in Table I, training from scratch provides much

better results even with respect to the human labeling.

In Fig.II, the original image has different layers, but only 3

top layers are annotated in the ground truth image. With our

training strategy, our model has been able to detect 5 layers.

As it was pointed out in the previous sections, HED model

produces side outputs in different scales. Fig.3 shows all side

outputs of the model and the final fusion for two data. It is

apparent that the first side outputs contain more details of the

image while the later side outputs project the general structure
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(a)

(b)

Fig. 3. Form left to right: the first image is the original image. The second image is the first side output which is the same size of the image. The third
image is the second side output which is half the size of the first side-output; likewise the third side-output is half the size of the second output, which is the
fourth image, so on. The utmost right image is the fusion of the five side-outputs.

(a) (b)

(c) (d)

Fig. 4. The test result of the model trained on ICE2012: (a) the original with
sharper fluctuations in the layer boundaries (b) the prediction result (c) the
non-maximal suppression result (d) the ground-truth.

of the image.

Fig.4 provides a sample of an image with more fluctuations

in the layer boundaries. Comparing to the human level detec-

tion, our result shows more layers; thus, it is more accurate.

As one further example of how well the model works in

the case of images that contain many internal layers, we have

included another sample of our results in Fig.7. The original

image contains many layer data. Towards the bottom of the

image, the human label annotation has missed some layer

information, particularly, it has detected only some parts of

one of the layers. However in our case, the model has been

able to detect more layers than the human annotation; but it

has failed to predict the very last bottom layer.

IV. EVALUATION

We tested our model on 260 images. The first column in

Table I presents the results for transfer learning in which

the model is trained on BSDS, and tested on our test set.

The second column shows the result of the model trained

on the synthetic ice data, and tested on our test dataset. The

final column shows the result of the train model on real data

ICE2012, and tested on our test dataset.

Here we report three different quantities for an algorithm;

the Optimal Dataset Scale (ODS) or best F-measure on the

dataset for a fixed scale, the Optimal Image Scale (OIS) or

aggregate F-measure on the dataset for the best scale in each

image, and the Average Precision (AP) on the full recall range

(equivalently, the area under the precision-recall curve), see

[34].
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TABLE I
EVALUATION RESULTS FOR THE TEST DATA SET

Transfer learning:Trained on BSDS Trained on synthetic data tested on ice Our Results

Side 1 ODS=0.130 OIS=0.111 AP=0.073 ODS=0.175 OIS=0.173 AP=0.123 ODS=0.320 OIS=0.465 AP=0.261
Side 2 ODS=0.162 OIS=0.186 AP=0.082 ODS=0.415 OIS=0.503 AP=0.234 ODS=0.763 OIS=0.779 AP=0.760
Side 3 ODS=0.199 OIS=0.202 AP=0.075 ODS=0.614 OIS=0.628 AP=0.491 ODS=0.796 OIS=0.824 AP=0.786
Side 4 ODS=0.170 OIS=0.196 AP=0.055 ODS=0.385 OIS=0.382 AP=0.206 ODS=0.732 OIS=0.769 AP=0.645
Side 5 ODS=0.276 OIS=0.295 AP=0.138 ODS=0.448 OIS=0.496 AP=0.364 ODS=0.512 OIS=0.572 AP=0.399
Fuse ODS=0.139 OIS=0.164 AP=0.040 ODS=0.292 OIS=0.379 AP=0.217 ODS=0.815 OIS=0.854 AP=0.815

(a) Side 1 (b) Side 2

(c) Side 3 (d) Side 4

(e) Side 5 (f) Fuse

Fig. 5. Precision-recall curve for each side-outputs and the fusion of them
on the test data.

The accuracy of various method that we discussed in Sec.II

are evaluated using the aforementioned standard measures.

We also apply a standard non-maximal suppression (NMS)

technique to our edge maps to obtain thinned edges for

evaluation purposes. The results are shown in Fig.IV, Fig. IV

and Table I.

V. CONCLUSIONS

In this work, we have studied a multi-scale deep learning

model and various approaches to implement it for detecting

ice layers in radar imagery. It is important to note that most of

the well-known deep learning approaches work very well on

normal images, but can not produce acceptable results in the

presence of noise. The fact that deep learning models are not

robust with respect to noise are discussed in various works (see

[35] for a recent report). In our experiments we have shown

that transfer learning approaches do not work well for radar

images, while training from scratch yields far better results.

However, the latter requires annotated data provided by the

(a) ICE fuse (b) BSDS training Fuse

(c) Synt Fuse

Fig. 6. Evaluation comparison: precision-recall curve for the fuse result on
the test set where the model is trained on (a) ICE2012 (b) BSDS500 and (c)
Synthetic data

domain experts. One way to avoid this would be to generate

synthetic data. The current result of synthetic data is not good,

but it looks promising. In our future work we are going to try

various methods to create synthetic data. We think the right

approach to these type of applications is to look into multi-

scale models.
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(a) Original Image (b) Prediction (c) NMS Result (d) Ground Truth

Fig. 7. Another sample of our experiment where the image contains high number of layer boundaries. The model is trained and tested on ICE2012.
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