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Fluorescence microscopy image
segmentation based on graph
and fuzzy methods: A comparison

with ensemble method

Maedeh Beheshti**, Akash Ashapure®, Maryam Rahnemoonfar® and Jolon Faichney?
aSchool of Information and Communication Technology, Griffith University, Australia
bCollege of Science and Engineering, Texas A&M University-Corpus Christi, USA

Abstract. Accurate segmentation of fluorescence images has become increasingly important for recognizing cell nucleus
that have the phenotype of interest in biomedical applications. In this study an ensemble based method is proposed for the
segmentation of cell cancer microscopy images. The ensemble is constructed and compared using Bayes graph-cut algorithm,
binary graph-cut algorithm, spatial fuzzy C-means, and fuzzy level set algorithm, which were chosen for their accuracy and
efficiency in the segmentation area. We investigate the performance of each method separately and finally compare the results
with the ensemble method. Experiments are conducted over two datasets with different cell types. At 95% confidence level,
the ensemble based method represents the best among all the implemented algorithms. Also ensemble method depicts better
results in comparison with other state-of-the-art segmentation methods.

Keywords: Bayes graph-cut models, image segmentation, ensemble methods, fluorescence microscopy images, spatial fuzzy

Cc-means

1. Introduction

Fluorescence microscopy is a main component of
biomedical studies, and cellular imaging is a method
of determining the subcellular location of proteins
[1, 2]. Fluorescence microscopy images are prepared
by shining excitation light on the specimen to activate
fluorescence [3, 4]. It provides an appropriate envi-
ronment for researchers to understand the structure
and architectural dynamics of the complex cellular
and molecular living organisms which is the main
purpose of biological research in the postgenomic era.

The aim of biological imaging experiments is
to accurately and automatically extract structural,
spatial, and functional quantitative information about

*Corresponding author. Maedeh Beheshti, School of Infor-
mation and Communication Technology, Griffith University,
Australia. E-mail: maedeh.beheshti @ griffithuni.edu.au.

some biological phenomenon [3, 5]. Some of the criti-
cal problems in microscopic image analysis to extract
useful information are restoration, registration, seg-
mentation and others. In this work we only focus on
cell nuclei image segmentation.

Cell nucleus image segmentation is a significant
part of many cytometric analyses [6]. In the cell seg-
mentation process, nuclear segmentation is the first
step and many simple operations like cell counting
and cell-cycle assignment is often performed after
this process. Automatic methods like machine learn-
ing with the ability to deal with different cell types and
image artifacts are required because semi-automatic
and manual segmentation performed by medical pro-
fessionals are exceedingly time-consuming, highly
subjective, and irreproducible.

There are many existing algorithms and techniques
for cell image segmentation [5, 7—13]. Over the past
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few years, the use of machine learning methods torec-
ognize all major patterns of subcellular locations has
been convincingly presented through different feature
sets and classifiers.

Graph-cut [7-9], Bayes graph-cut [5, 10] and
level set segmentation [11] approaches of machine
learning have been widely used for image cell seg-
mentation with promising results [12]. In [13] Pecot
et al. proposed a constrained graph-cut for 2D and
3D microscopy image segmentation based on choos-
ing superpixels for constructing a graph instead of
all pixels in an image. Beheshti et al. [5] proposed
a Bayes model based on binary graph-cut that is
able to perform foreground and background seg-
mentation. Their method inspires the benefits of a
Gaussian model in Bayes theory and is more power-
ful than traditional graph-cut when there is a noisy
environment for microscopy cells. In [14] Ersoy
et al. proposed a level set method as a combina-
tion of level set and graph partitioning approaches.
In [15] a multiple kernel local level set segmen-
tation has been proposed. The model incorporates
spatial constraints into data in order to achieve
microscopy cell image segmentation. In [16-19] a
region-based level set method applied for image
segmentation.

There are some advantages and disadvantages for
graph-cut models [20-22] and level set approaches
[23, 24]. Both of them are popular and accurate
segmentation methods that are now used with appro-
priate accuracy. In graph-cut methods which are
based on maximum flow/minimum cut approach, the
purpose is finding the shortest path in the graph, but
finding this shortest path is expensive [25, 26]. Also,
low computational efficiency is the most important
drawback of level set models. In order to tackle these
kinds of problems, in this paper we show how apply-
ing each graph-cut, level-set and weighted ensemble
methods on biomedical imaging provides high accu-
racy and efficient use of computational resources.
An unsupervised ensemble-based microscopy image
segmentation used in [27]. The authors proposed
a markov random field ensemble model for U20S
microscopy cell segmentation. Mohapatra et al. [28]
offered an ensemble classifier system for early diag-
nosis of lymphoblastic leukemia in blood with high
accuracy. The achieved accuracy by ensemble in
papers was promising.

To the best of our knowledge the weighted ensem-
ble methods [29-32] with the proposed structure
in this paper have not been used for fluorescent
microscopy image segmentation.

The major contribution of this paper is twofold.

— We propose a weighted ensemble framework
for accurate and robust segmentation of cancer
cell nuclei images based on four state-of-the-art
segmentation methods namely Bayes graph-cut
algorithm, binary graph-cut algorithm, spatial
fuzzy C-means, and fuzzy level set algorithm.
We apply the aforementioned segmentation
algorithms on bio-cell images in order to pro-
vide an appropriate infrastructure for a weighted
ensemble model. Then, the results of different
models will be sent to the weighted ensemble
algorithm to make a final decision based on
the weighted majority. The ensemble based seg-
mentation method takes advantages of all the
member methods to improve the segmentation
accuracy.

— Comprehensive evaluation and comparisons
between four state-of-the art methods and the
proposed weighted ensemble method is also per-
formed. We exploit Kappa and Naive statistical
measures in order to provide comprehensive
evaluation of both overall and class wise (fore-
ground and background) performances of the
proposed framework. Also, we performed a
comparison between our proposed method and
some other new and modern segmentation meth-
ods for two datasets.

Results revealed that the proposed weighted
ensemble method is better than the compared state-
of-the-art methods both in terms of accuracy and
robustness. The results also show that the perfor-
mance of our method is better than other new
segmentation methods.

In this paper, we used two datasets (simulated
and real) to compare ensemble results with other
methods. We show how the proposed approaches
are effective in cell nuclei image segmentation com-
pared with the conventional existing approaches.
This model tries to recognize cells or objects from
background with high accuracy and also make a vis-
ible separation between each of the two connected
cells. The rest of the paper is organized as fol-
lows. In Section 2, theoretical background of the
segmentation methods have been explained. Pro-
posed ensemble methodology is explained in Section
3. Dataset description, evaluation measurements of
the data used in the experiments, along with the
experimental results are presented in Section 4.
Finally, the discussions and conclusions are drawn in
Section 5.



M. Beheshti et al. / Fluorescence microscopy image segmentation based on graph and fuzzy methods 2565

2. Segmentation methods
2.1. Graph-cut image segmentation

The conventional binary graph-cut proposed by
Boykov and Jolly [25, 26] has been very popular in
studies of energy-based image segmentation in recent
years [33, 34]. This algorithm models images as an
undirected graph G(V, E) which V and E represent
graph-nodes (equal to image pixels P) and graph-
edges (shown in Fig. 1).

The main purpose is finding the s — ¢ cut of mini-
mal total cost with two labels in a graph that finally
extracts the object from the background. The total
cost of minimization is calculated based on the min-
imum flow/maximum cost algorithm which is the
main part of many global optimization methods in
computer vision. Each graph node corresponds to
a pixel in the image, and the link strength between
nodes can be quite different. The links can be divided
into two categories, ¢-links and n-links. By introduc-
ing both a region term and a boundary term into the
graph-cut energy function, the purpose of segmenta-
tion is to minimize the energy function in (1) as a
sum of regional (cost of 7-links) and boundary (cost
of n-links) terms.

E(P) = B Region(P) + Boundary (P) (1)
P defines a segmentation area and 8 > 0 is a coef-
ficient which emphasizes the regional term.

2.2. Bayes graph-cut image segmentation

The regional term in the conventional graph-
cut model (1) is calculated by a histogram model.
The Bayes graph-cut approach attempts to specify
Region(P)in (1) with Bayes model. In case of having

N .
Aayv .
N

2N

Fig. 1. Graph-cut model.

v el F0C)
-1

Fig. 2. Gaussian bayes model.

only two regions, “object” and “background”, two
events can be assigned to each pixel as follows: evl
in the presence of the object; and ev2 in the presence
of the background. In order to decide which event is
probable, one of the two probabilities, evl or ev2,
can be chosen. Then one of two decisions will be
achieved: 1) The object is present and thus should be
chosen by the segmentation procedure (Ds1); 2) The
background is present and thus should be chosen by
the segmentation procedure (Ds2). Figure 2 shows
the procedure of the Bayes graph-cut model.

2.3. Spatial fuzzy clustering for image
segmentation

Fuzzy c-means (FCM) clustering algorithm, as a
method of unsupervised clustering, has been mostly
used in different areas of image and data clustering
such as: image segmentation, cell imaging and geol-
ogy. In 1973, the FCM algorithm was proposed by
Dunn and later, in 1981, the algorithm was modified
by Bezdek [35]. The FCM algorithm aims to classify
an image based on a similar feature space. The goal
of the algorithm is minimizing P in (2).

N v
P=3 > Milyi—all @

Where M;; represents the membership of pixel y; in
the ith cluster, ¢; is the ith cluster center, ||.|| is a
norm metric and parameter  is a constant to control
the fuzziness of the result.

The conventional FCM algorithm does not take any
advantage of the pixel correlations. Neighbourhood
pixels in an image have a higher correlation in fea-
tures than the pixels that are not in similar vicinity.
Spatial relationship of image pixels is an important
feature for image segmentation that could be achieved
from pixel correlations. Chuang et al. [36] proposed
a spatial FCM which incorporates a spatial function
into the membership function as (3):

m k
/ M pi;

M, =_— 4" 3)
YL M} of;
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pij = ZkGNB(y/_) My is a spatial function to con-
trol spatial information. NB(y;) shows a square
window with the center on y; pixel in the spatial
domain.

2.4. Fuzzy level set for image segmentation

Compared with FCM models which utilize pixel
classification for image segmentation, level set meth-
ods exploit dynamic variation boundaries. Level set
methods utilize a combination of active contours and
a time dependent PDE function x(t, x, y) for image
segmentation [11].

In 1988, Osher and Sethian were the pioneers who
introduced the level set method for following fronts
propagating with curvature-dependent speed [37, 38].
In this paper we use a combinational framework of
fuzzy c-means and level set method [11]. In this
framework, the results of fuzzy c-means are utilized
for automating initialization and controlling parame-
ters of level set model. It benefits from spatial fuzzy
c-means to enhance determining contour of interest in
medical images. The fuzzy level set method applied
for different applications such as, video/image pro-
cessing, graphics and medical imaging [11, 39].

3. Proposed ensemble methodology

The main idea of an ensemble method as a machine
learning algorithm is a collective decision making.
Classifiers are the most important infrastructure of
an ensemble method and their vote prediction results
in a decision making for a new data point. The diver-
sities of clustering methods lead to the diversities of
their predictions and accuracy. In literature [40], two
voting mechanisms are available: (1) majority voting
and (2) consensus voting. The consensus requires all
classifiers reach a decision and a voting mechanism
assigns the class label only if all the members agree.
In the majority voting mechanism, a class label is
assigned depending on the majority of the classifiers
that has assigned that label. Majority voting is pre-
ferred in this study regarding the time and accuracy
achieved by experimental results. Individual privacy
of each classifier is preserved in this method and
since only the importance of counting votes is the
issue, decisions can be reached much more quickly
with majority rule. Due to its constraining nature,
consensus voting is found to be less efficient com-
pared with majority voting to address time-sensitive
issues.

Furthermore the accuracies obtained by an indi-
vidual member of the ensemble are not the same
so we have used a weighted majority framework.
We exploit a weighted voting framework as well as
its probabilistic set-up [32] for the weighted major-
ity framework as follow. Let us define a set of
classes as ¢ = {1, ..., Y.} and the number of clas-
sifiers in the ensemble as L. Then the probability
can be expressed as Pr(yls), k=1,..., ¢, where
s = [s1, 52, ...,s.]7 is a label vector. Since the clas-
sifiers are independent in terms of their decision, (4)
is defined as follow:

Pr(yr)

Pr(Y|s) = Pris)

L
II_, Pty @

Iﬁ denotes the set of indices of classifiers which
suggested v, and by IX the set of indices of the
classifiers which suggested another class label. The
probability of interest becomes as (5).

Pr(yr)
Pr(s)

M- i Pris; = Yely) )

Pr(Yils) = T e Prisi = Yy =

Let us define Pr(s; = Y|¥x) = pi and Pr(s; =

Vil = = for any k, j=1,..., ¢, j#k
Now the (5) becomes as (6) and (7) then (8):

Pr(yr) 1 —pi
PO = 5y * Mienpix M= (©)
Prils) = —— s« T, Z 220 prign)
r(Yr|s) = i— r

k Pr(s) =le—1 ¢
pilc—1)
Miert =7 7

log(Pr(yi)ls)

e (1 - p;
:10< ,:1( Di)

P = 1)L) + log(Pr(y)

Pi k‘ _
+Ziel’§,|10g(l—p,~>+‘]+ x log(c — 1)
(®)

By dropping the first term, since it does not
have any impact on the class decision making and
expressing the classifier weight, and defining the clas-

sifier weight as, ¥; = log (]f;,[_) , 0<p;i <1,the

above equation changes to (9).
log(Pr(ls)) oc log(Pr(y))
: k _
2 i Vit I xlogle—1) )
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Fig. 3. Overview of our proposed framework based on robust cell nuclei segmentation. The diagram from the left to right represent image
segmentation through four Bayes graph-cut, binary graph-cut, fuzzy LSM, SFCM and finally weighted majority based ensemble.

Our proposed methodology is explained in Fig. 3.
Initially we applied all four segmentation algorithms
to the images: Bays-graphcut, binary-graphcut,
fuzzyLSM and SFCM2D. Now we have segmented
maps. Ensemble results are created using all four
algorithms. It makes a decision on the basis of
weighted majority voting. The weights are assigned
to the members of the algorithm proportional to accu-
racies of the members. Images are segmented using
ensemble; then Naive and Kappa accuracies are com-
puted both overall and class wise.

4. Experimental results

This section shows experimental results of apply-
ing an ensemble segmentation method on human
colon cancer microscopy images [41, 42] and syn-
thetic images [43, 44]. We perform our experiments
on a collection of 50 images of two datasets of
Broad Bioimage Benchmark images. These dataset
and ground truths are available in this address, http://
www.broadinstitute.org/bbbc/. The proposed model
implemented with Matlab 2014 software using an
Intel core 15 3320M, 2.6 GHz CPU with 8 GB RAM.

4.1. Dataset description

1) Dataset 1 consists of a large number of HCS
simulated images which were generated with
the SIMCEP simulating software [43]. Each
image is 696 x 520 pixels in 8-bit TIF for-
mat. Their nuclei and cell areas were matched
to the average nuclei and cell areas from the
BBBCO005 Synthetic cells image set. These sim-
ulated images have a given cell count with a
25% clustering probability and a CCD noise
variance of 0.0001. Focus blur is also simu-
lated by applying Gaussian filters to the images.

We tested the ensemble model on 26 images of
dataset 1 for in-focus images (w1l) to denote
Hoechst images (shown in Fig. 4 (a) and
out-focusimages (w2) to denote phalloidin syn-
thetic images (shown in Fig. 4b) for foreground
segmentation.

2) Dataset 2 includes human HT29 colon cancer
cells images with the size of 512*%512 pixels
for an image. These fluorescent images are the
main data which facilitate any spatial and tem-
poral measurement of fluorescent molecules,
existing in a tissue, cell, or the whole body
of human. This is composed of two different
channels. For the first channel samples were
stained with Hoechst in order to label DNA in
the nucleus (shown in Fig. 4c) and for the third
channel Phalloidin used to stain the actin, which
is present in the cytoplasm (shown in Fig. 4d).
These images show human HT29 colon cancer
cells, a cell line that has been broadly employed
for the study of many normal and neoplastic
processes. We tested the ensemble model on
24 images of dataset 2 in 1 and 3 channels for
fore-ground segmentation.

4.2. Evaluation and measures

The segmentation accuracies are computed using
both overall Naive and Kappa statistics [45].
Appendix A and Appendix B respectively repre-
sent the formula and description used for Kappa and
Naive statistical evaluation methods both in class
wise and overall format. In overall Naive accuracy,
actual places on the ground truth are compared to the
same place on the map.

The Kappa analysis is a discrete multivariate tech-
nique offered for accuracy assessment. The Kappa
calculation is based on the difference between how
much agreement is actually presented between the
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(d)

Fig. 4. Original images of the two different data sets. (a-b) Synthetic microscopy images from SIMCEP (w1l and w2) (c-d) BBBC008

(cl and c2).

Fig. 5. Segmentation results of different methods on a randomly selected image from dataset 1. From left to right: original image, ground
truth, Bayes graph-cut, binary graph-cut, fuzzy LSM, SFCM and Ensemble method.

map of fluorescent images and their ground. truth
(observed agreement) compared to how much agree-
ment would be expected to be presented by chance
alone (expected agreement). In order to represent
accuracies of individual category, we also used pro-
ducer’s and user’s accuracies instead of just using
overall accuracy that only show the accuracy of
overall segmentation. User’s accuracy corresponds to
error of commission (inclusion) and Producer’s accu-
racy corresponds to error of omission (exclusion).

4.3. Dataset results

In this section, the performance of our weighted
ensemble method on dataset 1 is compared with the
Bayes graph-cut, binary graph-cut, fuzzy LSM and
SFCM (object/background) segmentation methods.
We take into account different evaluation measures
to calculate the accuracy and precision of the results

on dataset 1 for two groups of in- (w1) and out- (w2)
focus images. Figure 5 shows one of the original
images and the ground truth from channel w1 along
with the segmented images obtained using all the seg-
mentation methods including ensemble from left to
right. The results represent that ensemble method per-
formance is higher than the other methods. Although
the performance of binary graph-cut is close to the
ensemble, the ensemble result is still better because
of the smooth boundary of each recognized cell. The
objects and boundaries are obtained with better accu-
racy with the weighted ensemble model (shown in
Fig. 6). Bayes graph-cut is clearly not performing
well which can be seen in the figure when we com-
pare the result with the ground truth. However, it is
difficult to infer based on the visual interpretation
which algorithm is better. To have a better compari-
son in terms of accuracy and error we need to look
for numeric comparison.
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©

Fig. 6. Different boundary recognition in two models of segmen-
tation (a) Ground Truth (b) Weighted ensemble (c) segmentation
Binary graph-cut segmentation.

Table 1
Average of naive and kappa accuracy and error per each algorith
and ensemble — dataset 1-w(1) (%)

Segmentation  Naive Overall Naive Overall = Kappa Kappa

Algorithms Accuracy Error Accuracy Error

Bayesgraphcut 95.84 4.15 73.13 0.20

Binarygraphcut 99.12 0.87 95.10 0.08

fuzzy LSM 99.06 0.93 94.64  0.09

SFCM 99.11 0.88 95.04  0.08

Weighted 99.24 0.75 9574 0.08
Ensemble

An average of Naive and Kappa accuracy for each
algorithm in addition to their error has been shown
in Tables 1, 2 for channels w1 and w2 respectively.
When we look at the Naive overall accuracy, except
Bayes graph-cut, every algorithm seems to perform
similarly, but while looking into the Kappa overall
accuracy we see that SFCM and weighted ensem-

Table 2
Average of naive and kappa accuracy and error per each algorith
and ensemble — dataset 1-w(2) (%)

Segmentation  Naive Overall Naive Overall Kappa Kappa

Algorithms Accuracy Error Accuracy Error
Bayesgraphcut 87.70 12.29 70.43 0.12
Binarygraphcut 98.78 1.21 97.30  0.04
fuzzy LSM 99.04 0.95 97.88  0.03
SFCM 99.16 0.83 98.15 0.03
Weighted 99.19 0.80 98.20  0.03
Ensemble
Table 3

Average of naive user and naive producer accuracy per each
algorithm and ensemble dataset 1-w(1) (%)

Segmentation Naive User Naive Producer
Algorithms Fore- Back- Fore- Back-
ground  ground  ground ground
Bayesgraphcut 65.27 99.25 90.96 96.25
Binarygraphcut 94.58 99.63 96.63 99.39
fuzzy LSM 92.35 99.80 98.17 99.15
SFCM 94.30 99.65 96.81 99.36

Weighted Ensemble  94.58 99.76 97.80 99.39

Table 4
Average of naive user and naive producer accuracy per each
algorithm and ensemble dataset 1-w(2) (%)

Segmentation Naive User Naive Producer
Algorithms Fore- Back- Fore- Back-

ground ground  ground ground
Bayesgraphcut 66.14 99.16 97.65 84.81
Binarygraphcut 98.06 99.15 98.41 98.97
fuzzy LSM 9836 99.40  98.87 99.13
SFCM 98.51 99.51 99.07 99.21

Weighted Ensemble  98.40 99.60 99.25 99.15

ble are higher than the other methods. In overall,
it is easy to find that the accuracy of binary graph-
cut, fuzzy LSM and SFCM methods are very similar
to the weighted ensemble model. If we look at the
overall Naive errors for both focuses in w1l and w2,
weighted ensemble has the less Naive error. One com-
mon observation in both focuses is that weighted
ensemble is performing better than other algorithms
both in terms of overall Naive and Kappa accuracies
and errors.

An average of Naive user and producer accuracy
for each algorithm has been shown in Tables 3 and 4.

Although binary graph-cut, fuzzy LSM and SFCM
perform similar to the weighted ensemble method
for foreground and background, the results of these
Tables show better and acceptable accuracy for
weighted ensemble method in foreground and back-
ground. From the Tables 3 and 4 we can observe that
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both user’s and producer’s accuracies for background
are higher than that of the foreground in both the w1,
w2 focuses and for all the segmentation algorithms. It
means extracting the exact foreground from the image
is relatively difficult for all algorithms.

According to the Tables 1-4, for both w1l and w2,
it is observed that Bayes graph-cut has the worst per-
formance amongst all the segmentation algorithms.
As those Tables demonstrate, robustness of ensem-
ble in terms of higher accuracy and lower error is
higher in both groups of w1l and w2. Also one inter-
esting observation is that in channel w2 segmentation
accuracies are higher than that of in channel w1.

Figures 7(a-d) and 8(a-d) respectively depict a box
plot of Naive and Kappa accuracies and errors in both
focuses of wl and w2 for all the implemented algo-
rithms per image. The results of ensemble for each
image show how similar the results of accuracy are
to each other. In other words, for a range of images in
different focus in-out the result of ensemble is highly
consistent; it is the same case for error. Figure 9
shows a comparison between the average of Naive
user and Kappa user accuracy for each algorithm
for foreground and background. Figure 10 shows
a comparison between average of Naive producer
and Kappa producer accuracy for each algorithm for
foreground and background. It is very important to
analyze that whether the segmentation error is evenly
distributed between classes (background and fore-
ground) or if one of them is really bad and other is
really good. Therefore, we include class wise accu-
racies (User’s accuracy and Producer’s accuracy).

In this experiment we worked with a clean (without
noise) image dataset to apply the ensemble method
and the rest algorithms. Results revealed that the
performance of the proposed algorithm is robust,
because it is consistently better than the rest, regard-
less of any channel. In addition to higher performance
the proposed method is able to separate congested
cells more accurately which also motivated us to
propose our model based on the weighted ensem-
ble. The ensemble method takes all the benefits
of Bayes graph-cut, binary graph-cut, fuzzy LSM
and SFCM segmentation models and shows stronger
results in high performance and low error for each
image and average of images. The first step in Bayes
and binary graph-cut models is specifying some pre-
defined points by the user. We tested our Bayes and
binary graph-cut models with different number of
foreground and background seed points which were
interactively selected by a human user. We selected
50 seed points for foreground and 30 seed points

for background. The total results for the ensemble
method shows that overall error decreased and overall
accuracy increased.

For dataset 2 also, results revealed that the pro-
posed algorithm is robust to any changes in image
format and error. The ensemble method takes all the
benefits of Bayes graph-cut, binary graph-cut, fuzzy
LSM and SFCM segmentation models and shows
stronger results in high performance and low error
for each image and average of images. We selected 10
seed points for foreground and 5 seed points for back-
ground. The total results for the ensemble method
shows that overall error decreased and overall accu-
racy increased.

4.4. Compartmental results

In order to compare our proposed method with
other state-of-the-art segmentation methods, we
reported the results of the Merging algorithm (MA)
[33], the Watershed algorithm (WA) [46], the Otsu
thresholding (OT) [47], and some level set-based
methods such as, the Bayesian based level set
approach (BLS) [48], the region-scalable fitting
energy functional (RSFE) [49], the distance regular-
ized level set method (DRLSE) [50], the level set
method based on the Bayesian risk (LSBR) [51] and
local level set method based on the Bayesian risk and
weighted image patch (LLBWIP) [52].

Table 5 displays the segmentation results of the
proposed weighted ensemble approach averaged over
all images in the data set 1. As can be seen from
Table 5 the proposed weighted ensemble approach
produces the best results for the FN measure and Dice
according to (10).

. 1 n 2|[RNS|
Dice(R, S) = — _ 10
RS)=02 R+ 1o
T T
RER(%) = cell + background % 100 (11)

We compare also the performance of our proposed
algorithm, Weighted Ensemble, with CV [19], Spa-
tial fuzzy clustering with level set methods (SFLS)
[11], region-scalable fitting energy (RSFE) [49],
local chan-vese (LCV) [53], Otsu thresholding (OT)
[47], Watershed algorithm (WA) [33], GCCV [54],
GCLCYV [18] and spatial fuzzy clustering based on
the global and local region information (SFCGL) [18]
for data set 2.

Table 6 displays the segmentation results of the
proposed approach averaged over all images in the
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Fig. 7. Box plots of (a) overall Naive accuracy (w1), (b) overall Naive accuracy (w2), (c) overall Kappa accuracy (wl), (d) overall Kappa

accuracy (w2) for dataset 1.
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dataset 1.
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Fig. 9. Average Naive and Kappa user accuracies for foreground and background for four segmentation methods and ensemble (dataset 1).
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Fig. 10. Average Naive and Kappa producer accuracies for foreground and background for four segmentation methods and ensemble

(dataset 1).

Table 5
Quantitative results of different segmentation
approaches for dataset 1

Method Dice FN
MA [33] 0.80 12.9
WA [46] 0.75 17.8
OT [47] 0.76 13.9
BLS [48] 0.68 21.5
RSFE [49] 0.70 19.6
DRLSE [50] 0.70 16.7
LSBR [51] 0.75 15.9
LLBWIP [52] 0.83 7.2
Weighted Ensemble 0.99 0.02

data set 2. As can be seen from the Table 6 the pro-
posed weighted ensemble approach produces the best
results for the FN and Dice measures. In terms of

Table 6

Quantitative results of different segmentation
approaches for dataset 2

Method PER (%) Dice FN
CV [19] 4.68 0.75 3.1
RSFE [49] 3.12 0.78 3.6
LCV [53] 3.04 076 3.2
SFLS [11] 3.54 073 42
WA [33] 591 0.67 438
OT [47] 4.82 0.85 2.7
GCCV [54] 2.98 079 32
GCLCV [18] 2.6 092 33
SFCGL [18] 1.63 094 34
Weighted Ensemble 2.1 0.98 0.10

RER (%) according to (11), it can be seen that our
method produces better results than all other methods

except SFCGL.
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Fig. 11. Runtime in seconds for Bayes graph-cut, binary graph-cut, fuzzy LSM and SFCM segmentation methods and weighted ensemble.
The left bar indicates estimation time for dataset 1 and the right bar is the estimation time for dataset 2.

5. Discussion and conclusion

We proposed a weighted ensemble approach to
fluorescence cell nuclei image segmentation (fore-
ground/background) and cancer detection based on
Bayes graph-cut, binary graph-cut, fuzzy LSM and
SFCM. We applied our proposed ensemble model
on two real and simulated microscopy datasets with
different channels and focuses. In order to eval-
vate the performance we calculated the accuracy
and error of our method. Different statistical mea-
sures such as Naive and Kappa statistical measures
were used for both datasets. Also, we compared
our proposed method with the state-of-the-art algo-
rithms and compared their performance on datasets
of human disorders. Our results show that for bio-
cell images with complicated or unclear cells, the
proposed ensemble method is able to exhibit supe-
rior performance. Results revealed that the proposed
algorithm is robust to changes in image focuses and
has higher performance than the others regardless
of any channel and dataset. The comparison results
of datasets 1 and 2 shows even better results for
dataset 2 which contains real images with disorders.
It means effectiveness, consistency and stability of
the ensemble method in a real environment is abso-
lutely high. We performed a hypothesis testing for
weighted ensemble method and all other methods.
The ensemble was the winner of the hypothesis test
with 95 percent confidence interval.

Figure 11 depicts the runtime in seconds for
four state-of-the-art segmentation methods and the
proposed weighted ensemble for datasets 1 and 2,
provided the segmentation results are available. As
the time diagram shows SFCM algorithm takes the

least time among the mentioned four algorithms and
fuzzy-LSM consumes the most time. The overall run-
time of the ensemble method is a few seconds more
than the others due to the dependency of the method to
the other algorithms. For Bayes graph-cut and binary
graph-cut algorithms which are interactive methods,
the time will be increased by size of the cell in order
to choose the seed points.

For our future work, we plan to propose a combina-
tion work of probabilistic approach with determinis-
tic graph-cut models embedding ensemble methods
for cell imaging. Also, we will apply our proposed
method to other different noisy bio-cell images and
expand our experimental results on various data sets.
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Appendix A
KAPPA STATISTICS COMPUTED FROM ERROR MATRIX
Symbol Description Formula
1 k
6, == -
01 Intermediate coefficient 1 n lz-l:ni'
1 L]
6, =— n..
02 Intermediate coefficient 2 n,2 gnﬂ i
1 L]
6,=— ; +n,;
8 Intermediate coefficient STt éﬂﬁ (. 1)
1 L
6, Intermediate coefficient by=— Zzngj (n je t n+,~)2
n e
A 91 - 02
K Overall Kappa W
2
0, (1 - 01)
4+
(1-6,)
afi Standard exror of overall Kappa l< 21 —01)(281932 — 05) }
(1-6)
2
+ (1_ 01) (04 - 40:)
4
| -6,
N , nn; —n, .n;
K.. Kappa user’s accuracy m
i+ i+
Standard error of Kappa user’s —
accuracy —Ms- .
n . b;. '(1_p+l')
=1t =B
o-;;,_ (P = n’ i n’ ) [(pi. — Pi)(Pi,-P.i — Pi) + Pyi-
n,; A= p =Py +Py)]
p-o»l' = _)
n
A nn;—n,.n;
K.j Kappa producer’s accuracy ﬁ
+j TR
P,j — Pj
o SA_. VY
P, j (1 -p )',,)
o, Standard error of Kappa producer’s _ _
Ey; accuracy E [(P+j pjj)(p+j-pj+ p]']')+pi-

(1_P+j —Pj +P;j)]
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Appendix B
NAIVE STATISTICS COMPUTED FROM ERROR MATRIX
Symbol Description Formula
n; Number of observationsin row i and coumn; As observed
Marginal sum ofrow i k
n.
" 2z 1
Marginal sum of columns j k
n,; Igm J Z T
n Totalnumber of observation k k
Zm Z j=1 nr'J
Overall accura L
A, e cy >
11}
i=1
n
- Overall error -
A, 1-A,
User's accura
G v e
.

- Commission error -C
Ci 1-G
s, Standard error of user’s accuracy

Producer’s accura
O 7 my
n, j

- Omission error -0
0, 1-0,
s Standard error of user’s accuracy
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