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Abstract- One of the reliable methods in least-squares method is 
multigrid technique which overcomes the problem of slow 
convergence and less-accurate of Gauss-Seidel by transforming 
problem to coarser grid. It makes a pyramid of grids. Each grid has 
half the resolution of its predecessor. It uses two restriction and 
prolongation operators called fine-to-coarse and coarse-to-fine 
operators respectively. In this research, discrete wavelet 
decomposition and its reconstruction have been applied on the two 
operators. One of the assumptions made on this operator is that as 
long as the wavelet transformation decomposes the 2-D signal to 
one low frequency and three high frequency components, it should 
converge faster and more accurate than the multigrid method. This 
is due to the fact that the transformation of only low frequency 
component would suffice rather than transforming the whole grid 
to coarser grid. The idea has been implemented and tested on 
simulation data and the results confirm the assumption. In this 
paper the results of implementation of various wavelet filters and 
also multigrid techniques on various simulation data (with and 
without noise) are presented. In all cases, wavelet techniques have 
shown improved results than multigrid techniques. 

 
I. INTRODUCTION 

Interferometric Synthetic Aperture Radar (InSAR) is a technique that 
uses two or more SAR images over the same area for extracting high-
resolution digital terrain data. The technique relies on the 
measurement of the phase of the echoed signal rather than its 
amplitude, as found in conventional imaging radar system. The 
extreme sensitivity of the technique to altitude changes, high spatial 
resolution and broad swath coverage makes it an extensive and 
accurate measurement means in many fields; namely earthquake 
monitoring, erosion studies, mining prospecting, and military tactics. 

The technique brings strong advantages such as independency of 
natural illumination or recognizable targets over classical 
stereoscopic optical imaging.  
Nevertheless, InSAR presents very difficult stages like phase 
unwrapping. Phase unwrapping is the key problem in building the 
elevation map of a scene from interferometric synthetic aperture 
radar system data. Due to the nature of SAR imaging, they do not 
contain information about the absolute phase of the returning radar 
echoes, but the phase is wrapped to the interval [ ]ππ ,− . 

Reconstruction of the absolute phase from the wrapped phase value is 
called phase unwrapping.  
A variety of approaches to 2-D phase unwrapping have been 
proposed recently. They can be classified to local and global or path-
following and least-squares methods respectively. The first method is 
based on the identification of residues, local errors in the measured 
phase caused by signal noise or by actual discontinuities, and the 
definition of suitable branch cuts to prevent any integration path 
crossing these cuts. The estimated neighboring pixel differences of 
unwrapped phase are integrated along paths avoiding the branch cuts 
where these estimated differences are inconsistent [1]. The problems 
of this approach are the definition of suitable branch cuts and the 
time consuming computations. The least-squares methods that are 
global methods are introduced in next section. After considering 
wavelet method in section II we give some example on it and 
compare it with multigrid method. 

 
II. ALGORITHM 

Let us assume that we know the phase of interferogram, ji,ψ , 
that is known only between π−  and π . We want to 
determine the unwrapped phase value, ji ,φ , at the same grid 
locations:    
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kjiji .2,, πφψ +=     k is an integer  πψπ <<− ji,      (1) 
 
The least square approach for phase unwrapping obtained this 
unwrapped phase value by minimizing the difference between 
the discrete partial derivatives of the wrapped phase data and 
the discrete partial derivatives of the unwrapped solution [2]. 
We define the following partial derivatives of the wrapped 
phase data as [2]: 
 

}{ ,1,, jijiji Wx ψψ −=∆ + , }{ ,1,, jijiji Wy ψψ −=∆ +  (2)     
              
The difference between these partial derivatives (2) and the 
partial derivatives of solution must be minimized in least 
square sense: 
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Differentiating the above sum with respect to ji ,φ  and setting 
the result equal to zero, the following equation is obtained: 
 

++− −+ )2( ,1,,1 jijiji φφφ jijijiji ,1,,1, )2( ρφφφ =+− −+  (4)   

Where ji,ρ  is equal to: 
 
              )( ,,1,,1, jijijijiji yyxx ∆−∆+∆−∆= ++ρ          (5) 

 
Equation (4) is a discretization of the Poisson’s equation (6) in 
a rectangular grid [2]: 
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Writing above equation in matrix format yields the following 
equation: 
 
                                 ρφ =A                                               (7) 
 
Which A  is a sparse matrix and φ  is the solution of phase 
unwrapping. The classical method for solving the Poisson’s 
equation is called Gauss-Seidel relaxation. Due to its 
extremely slow convergence, Gauss-Seidel relaxation is not a 
practical method but it is the base of multigrid [3] and wavelet 
method.  
Gauss-Seidel relaxation is essentially a local smoothing 
operator that removes the high-frequency components of the 
error very quickly but the low-frequency components 

extremely slowly [3]. Multigrid techniques overcome this 
limitation by transforming low-frequency components of error 
into high-frequency components which can be removed 
quickly by Gauss-Seidel relaxation. This is accomplished by 
transforming the problem to coarser grid. It make a pyramid of 
grids, each grid has half the resolution of its predecessor and 
uses two restriction and prolongation operators called fine-to-
coarse and coarse-to-fine operator, respectively[3]: 
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Where jif ,  is the “fine” grid and jic ,   is the “coarse” grid.  
  In this research the pair of wavelet transform, decomposition 
(analysis) and reconstruction (synthesis), have been applied on 
the two operators. For the decomposition in stage one, we first 
convolve the rows of the image S with low-pass and high-pass 
filters (Lo_D and Hi_D) and discard the odd-numbered 
columns (downsample) of the two resulting arrays. The 
columns of each of the N/2-by-N arrays are then convolved 
with low-pass and high-pass filters and the odd numbers rows 
are discarded. The result is the four N/2-by-N/2 arrays 
required for the stage of transform [4]. In Fig.1 0cA  is equal 

to S  for the decomposition initialization.  
 

 Figure 1.Decomposition step of discrete wavelet transform 
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Just like the multigrid method [3] after relaxing 1v  time on 

the equation NNA ρφ =  with initial guess Nφ we transfer 
the residual error of the above equation with decomposition 
step of Discrete Wavelet Transform (DWT) to be solved to the 
coarser grid. Our coarser grid composed of one low- 
frequency and three high-frequency components. In this stage 
relaxation is done on the residual equation rAe =  in the 
low-frequency component grid, with the initial guess 0=e  

where r is the known residual error, φρ ˆAr −= . The 
resulting solution on the lower component of coarser grid can 
be regarded in turn as an intermediate solution whose residual 
error is transformed to the next coarser grid with DWT. This 
process continues to NJ 2log<  to the coarsest grid, then the 
solution transfer to finer grid by reconstruction analysis of 
DWT (for more detail on wavelet transform see Ref.4) and 

added to the approximation φ̂  to yield a better solution on the 
finer grid. Like multigrid algorithm we can move along a V-
cycle or W-cycle [3]. This algorithm can be extended to 
weighted case that again uses decomposition and 
reconstruction step of DWT instead of restriction and 
prolongation operators of multigrid. 
 

III. EXPERIMENTAL RESULTS 
 

In order to test the performance of the illustrated algorithms 
we consider the simulated phase pattern of 256256 × pixels 
that is shown in figure 2. We wrapped this function to 
generate an interferogram (Fig. 3). The reconstructed phase 
pattern via Gauss-Seidel, multigrid and wavelet method with 
the same number of iterations (100 iterations) are shown in 
Figs. 4-6. Standard deviation error for multigrid and wavelet 
methods is 2.88 and 2.10, respectively. Biorthogonal wavelet 
with effective length of 17 and 3 is used for low-frequency 
and high-frequency filters. Standard deviation error of other 
filters such as Discrete Meyer and Daubechies (order 15) is 
2.22 and 2.15 respectively. Finding the best filter for a specific 
region remains as further research. 

 
Figure 2. Simulated phase pattern 

 

 
Figure 3. Interferogram 

 

 
Figure 4. Reconstruction with Gauss-Seidel 

 

 
Figure 5. Reconstruction with multigrid 

 

 
Figure 6. Reconstruction with wavelet 
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In other experiment a terrain model is generated with fractal 
(Fig. 7) and its corresponding interferogram contain a pattern 
of fringes is shown in Fig.8. In this case a weighted wavelet 
and multigrid method is used. Figs. 9-10 show the weights for 
row and column derivatives by the phase derivatives variance 
algorithm. Fig. 11 shows the reconstruction phase pattern of 
wavelet method. In this case the RMS error and standard 
deviation for wavelets are 0.62 and 0.59 while these values for 
multigrid are 0.66 and 0.64 that shows a little better solution 
of wavelet in weighted case. As Pritt explained in Ref.[5] least 
squares solutions are not congruent to the wrapped input 
phase, so we did a post processing step on two results and 
RMS errors after this step are 0.13 and 0.24 for wavelet and 
multigrid, respectively.     
 
 

 
Figure 7. Simulated phase with fractal 

 

 
Figure 8. Interferogram of fractal 

 

 
Figure 9. Row weights 

 

 
Figure 10. Column weights 

 
 

 
Figure 11. Reconstruction with wavelet 

 
 

IV. CONCLSION 
 
An approach for phase unwrapping has been described based 
on wavelet transformation. Experiments show the better 
accuracy of wavelet method in comparison with multigrid. In 
addition wavelet has the potential of using various filters that 
must be tested in further research.  
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