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ABSTRACT

Majority of deep learning methods are developed for RGB
imagery. However, for many applications such as detecting
objects underwater other types of sensors such as sonar or
radar are required. One of the most precise sensors to map the
seagrass disturbance is side scan sonar. Here we developed a
new deep learning framework based on dilated convolution,
dense module, and inception to perform semantic segmenta-
tion for automatic extraction of potholes in underwater sonar
imagery. We tested our proposed approach on a collection of
underwater sonar images taken from Laguna Madre in Texas.
Experimental results in comparison with the ground-truth and
state-of-the-art semantic segmentation methods show the ef-
ficiency and improved accuracy of our proposed method.

1. INTRODUCTION

In recent years Convolutional Neural Networks (CNN) have
been widely used in computer vision research including clas-
sification [1,2], object recognition [3], counting [4,5] and se-
mantic segmentation [6]. Majority of deep learning methods
are developed for RGB imagery. However for many appli-
cations such as detecting objects under water [7, 8] or under
ice [9,10] other types of sensors such as sonar or radar are re-
quired. This research investigate developing a novel semantic
segmentation technique based on dense inception network for
identifying pothole in seagrass.

The widespread loss of seagrass beds is largely caused
by the rapid expansion of human populations around coastal
waterways. Detection of seagrass with optical remote sensing
(both satellite imagery and aerial photography) is complicated
by the fact that light is attenuated as it passes through the
water column and reflects back from the benthos.

Underwater acoustics mapping produces a high definition,
two-dimensional sonar image of seagrass ecosystems. The
intensity and contours of the image are then determined by the
amount of time a sound wave takes to return to the transducer
and how the waves were reflected.

Several pattern recognition techniques have been applied
on sonar images mainly for detecting concrete objects on
sandy sea floor based on hierarchical MRF model [11], active
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contour [12], Bayesian classifier [13], Gauss-Markov random
field model and level-set [14].

Side scan sonar (SSS) has been recently used for detecting
the extent of seagrass beds and mapping its disturbance [7, 8]
based on mathematical morphology and level set. all of the
aforementioned techniques are based on hand-crafted feature
engineering.

Here we developed a new deep learning framework based
on Dilated convolution, Densenet, and Inception to perform
semantic segmentation for automatic extraction of potholes in
underwater sonar imagery. We tested our proposed approach
on a collection of underwater sonar images taken from La-
guna Madre in Texas. Experimental results in comparison
with the ground-truth and state-of-the-art semantic segmenta-
tion methods show the efficiency and improved accuracy of
our proposed method.

2. METHODOLOGY

The overall architecture of our method is depicted in Figure 1.
It includes three different modules: 1) Atrous block, 2) Dense
module, 3) DeconvXY block. The specific parameters of the
network is shown on Table1.

Dilated (Atrous) Convolutions: Atrous convolutions
help to build scale invariance and provide the network with a
larger viewing window. We used this module to extract multi-
scale information about our original image. This assists the
early level dense modules with contextual information. Our
Atrous Block is comprised of a series of convolutions with
different dilations that share kernel weights. Gradients are
calculated only for the first convolution. Each output is con-
catenated together, and then a final convolution is performed
in order to help disrupt the gradient shifts from our uncon-
ventional method and compress the information to prevent
parameter explosion in our coming Dense Blocks.

Dense module: Dense convolutional networks (DenseNet)
is build with feed-forward connections between each layer to
every other layers [15]. Such network is designed to alleviate
the vanishing-gradient problem while maximizing the infor-
mation flow between network layers. It requires fewer param-
eters by reducing redundant feature map learning. Moreover,
each layer has direct access to the gradients from the loss
function and the original input signal which will provide an
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Fig. 1. Our Network Architecture

Network State Shape of State
Images (440,200,1)
Output of Atrous Block (440,200,12)
Output of DenseBlock1 (Pre-Pooling) (440,200,92)
Output of DenseBlock1 (Post-Pooling) (220,100,92)
Output of DenseBlock2 (Pre-Pooling) (220,100,172)
Output of DenseBlock2 (Post-Pooling) (110, 50,172)
Output of Denseblock3 (Pre-Pooling) (110, 50,300)
Output of DenseBlock3 (Post-Pooling) ( 22, 10,300)
Output of DeconvXY3 (110, 50, 36)
Output of DeconvXY2 (220,100,150)
Output of DeconvXY1 (440,200,160)

Table 1. Network State Sizes

implicit formulation between layers. This is also shown to
perform some regularization effect which may be helpful for
over-fitting problems.

DeconvXY: Our proposed Inception-Deconvolution, re-
ferred to as DeconvXY due to the way channels perform their
deconvolutions can be seen on Figure 2. This module uses
three different channels of transposed convolutions which up-
sample the network at different rates. The output feature map
of each transposed convolution is the inverse of how much
upsampling occurs. As an example, a 1 × 1 network with 4
feature maps, (1 × 1 × 4), being upsampled by a rate of 2
would become (2×1×2) and (1×2×2) after the first trans-
poses. The final shape would be 2× 2× 1 at the end of each
channel. These outputs are concatenated together and then
have dropout performed with a keep percentage of .85, then
fed to the next module in the network. This type of data rep-
resentation ensures that these modules are limited in scope
to translating information into different spatial dimensions,
rather than creating new inferences.

Fig. 2. Inception-Deconvolution Module (DenconvXY)

3. EXPERIMENTAL RESULTS

Data was collected from the seagrass beds of the Lower La-
guna Madre in southern Texas in 2016 from an average depth
of 75 cm. A specialized side scan sonar unit was constructed
consisting of a towfish with two Lowrance Structure Scan
HD LSS-2 transducers, a Dual Beam 200 kHz down- imaging
transducer connected to a Humminbird 998C HD SI control
unit. A total of six transects approximately 5000 x 60000 pix-
els and overlapping by 50% were processed individually to
image an area of approximately 88,000 m2. The images used
in this experiment were large transects. Each transect was
600 meters long, and spaced 20 meters apart with a horizon-
tal swath of approximately 50 m. Total area covered between
all six transects was 88,000 square meters (150mX600m).

To apply our proposed method on these images, they were
re-sized to a uniform width of 4400 then chopped into varying
amounts of 4400×2000 images, resulting in 167 total images,
with 117 for training and 50 for testing. These images are
augmented by flipping along the horizontal and vertical axes,
increasing the number to 468 and 200.

For training, we evaluate our loss using cross entropy and
optimize using the Adam optimizer, a learning rate of 1e-3,
and a batch size of 8. The normal training, validation, testing
format is replaced with training, testing for each epoch until
the error begins to increase. The optimal amount of training
on this dataset for our architecture was 14 epochs. For evalu-
ating metrics we use accuracy, intersection over union (IOU),
precision, recall, and F1 score for each class then calculate
the mean per class metrics.

Detailed quantitative results can be viewed on Table 3,
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Metric Formula

Accn
TPn+TNn

TPn+TNn+FPn+FNn

IOUn
TPn

TPn+FPn+FNn

Precn
TPn

TPn+FPn

Recn
TPn

TPn+FNn

F1n 2 Precn∗Recn
Precn+Recn

Table 2. Evaluation Metrics

Class Seagrass Pothole Mean
Accuracy 95.84 95.78 95.81
Precision 82.81 96.89 89.85
Recall 70.61 98.42 84.51
IOU 61.58 95.40 78.49
Specificity 98.47 74.36 86.42
F1 76.22 97.68 86.93

Table 3. Our Per Class Results

and formulas used to obtain these results can be seen on Table
2. Mean per class metrics between our proposed method and
FCN [16] can be viewed on Table 4. Training was completed
in under two hours utilizing a single machine leveraging a
single GTX-1080-TI.

A side by side comparison with FCN [16], ground truths,
and the proposed network can be found on Figure 3.

A large benefit of our proposed architecture is the smooth-
ness and lack of artifacting in the output feature map due to
skip connections. In fact, after the Atrous Block, the gradient
flows almost unimpeded to every other point in the network.
The output from the Atrous Block is maintained through each
Dense Reduction with max pooling, through skip connec-
tions, and through each convolution in each Dense Reduction.

Our proposed network outperforms FCN on every met-
ric, however, the point where the proposed network excels are
the number of parameters. The proposed network uses ap-
proximately 9.2 million, while FCN [16] utilizes 141 million
parameters. While FCN is better at extracting features like
boat scars, the increased overhead and downgrade of metrics
is not effective enough.

Network Ours FCN
Accuracy 95.81 95.38
Precision 89.85 88.90
Recall 84.51 82.22
IOU 78.49 76.16
Specificity 86.42 84.49
F1 86.93 85.16

Table 4. Mean Per Class Metrics

4. CONCLUSION

In this project we developed a novel architecture for seman-
tic segmentation of pothhole in sonar imagery. Our method
outperformed the state-of-the-art techniques in terms of both
accuracy and efficiency. While our proposed network outper-
forms previous networks in this segmentation task, feature ex-
traction of argumentative features could be improved. Other
avenues of improvement are further optimization of the net-
work to decrease parameters, increase portability, and speed.
The intended goal of this system is to be able to deploy it on a
mobile platform in order to generate real time sensor analysis
for environmental and fishery preservation.
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Image Our Network Ground Truth FCN [16]
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