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REAL-TIME SCENE UNDERSTANDING OF UNMANNED AERIAL 
VEHICLE IMAGERY WITH AND BEYOND VISULA SENSORS BY 

DEEP LEARNING 

Maryam Rahnemoonfar,* Clay Sheppard,† and David Bridges‡ 

Deep Convolutional Neural Networks (CNNs) have emerged as a powerful 

model for classifying image content, and are widely considered in the computer 

vision community to be the de facto standard approach for most problems. Here 

we present a deep convolutional approach for classification of Aerial imagery 

taken by UAV. We applied our network on optical and infrared imagery taken 

with UAV RS-16 from Port Mansfield, TX. The proposed architecture is able to 

predict the labels for the images captured by UAVs in real time. We trained and 

tested our architecture on different combination of optical and IR Imagery. In 

our experiment it is harder for network to learn the characteristics of IR imagery 

in comparison to optical imagery. However, in the case that we enrich our IR 

training dataset with optical imagery, it reached a high accuracy similar to opti-

cal imagery. Experimental results in comparison with the ground-truth show the 

efficiency of our approach for the classification of UAV imagery across the 

spectrum. 

INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have seen unprecedented level of growth in recent 

years. UAVs are increasingly used for surveillance, fire detection, reconnaissance, map-

ping, cartography, landslide monitoring, inspection, traffic monitoring, search and rescue, 

to name a few application domains [1-3]. It is important for many of the aforementioned 

applications to perceive the scene in real-time. If a high altitude UAV can perform scene 

understanding by predicting the nature of landscape at any particular location, then a 

lower altitude UAV or a UGV (unmanned ground vehicle) can be send to the desired lo-

cation for further detailed analysis for a specific application. The main purpose of the 

scene understanding using high altitude UAV is to remove the overhead of finding the 

desired location for the lower altitude UAV or UGVs for their specific purposes.  Current 

computer vision algorithms and datasets are designed and evaluated on lab setting human 

centric photographs taken horizontally with a close distance to the object. For UAV im-

agery taken vertically in high altitude (10m to 100m) the objects of interest are relatively 

small and with less features, questioning the sustainability of current methods. For exam-
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ple an aerial image of building has only the top view of the building and except the roof, 

no distinguishable features are there. On the other hand, corresponding terrestrial image 

of the same building has many features like door, windows, walls which makes it easier 

for recognition even by human.  

Several approaches are utilized for object detection in aerial images. In 1988, Huertas 

and Nevatia [4] proposed a technique to detect buildings according to the rectangular 

components and shadow information. Based on the similar concept, Sirmacek and Unsa-

lan [5] presented an approach to detect buildings using invariant color features, edge, and 

shadow information. Cote and Saeedi [6], introduced a method using Harris corner detec-

tor for building detection. Manno-Kovacs and Sziranyi [7] proposed a framework based 

on region orientation with several steps to achieve building detection. The main draw-

back of aforementioned methods is that they are not suitable for real time applications. 

Moreover, traditional approaches cannot learn new features automatically [8-10]. Feature 

engineering is required to decide explicitly what features to learn. With the recent ad-

vances in GPU technology, deep learning has emerged as a feasible solution to real time 

applications. Deep learning consists of simultaneous learning of hierarchical models from 

multiple levels of representation that helps to identify input data [7, 11]. First, a complex 

task is decomposed into features that are fed to the next layer. Ideally, each layer gener-

ates results that approximate the expected solution. In the literature deep learning has 

been successfully exploited for object recognition [12-15], speech recognition [7, 16-19] 

and language processing [20, 21]. However limited work is performed for scene under-

standing using UAV images. 

In this paper, a deep convolutional neural network framework is implemented to 

achieve a fast and accurate result for classification of Aerial images taken with UAV. The 

network architecture comprises a series of convolution and pooling layers followed by 

fully connected layers. We applied our network on optical and infrared (IR) imagery tak-

en with UAV RS-16 from Port Mansfield, TX. The proposed architecture is able to pre-

dict the labels for the images captured by UAVs in real time. We trained and tested our 

architecture on different combination of optical and IR Imagery. Our optical and IR im-

agery are not registered. In our experiment it is harder for network to learn the character-

istics of IR imagery in comparison to optical imagery. However in the case that we enrich 

our IR training dataset with optical imagery and test it in IR imagery it reached a high 

accuracy similar to optical imagery.  This result is really important for UAV flight exper-

iment with limited payload. IR sensors can be used only on testing phase and still reach 

the high accuracy as optical imagery.  

The rest of the paper is organized as follows. Background of Convolutional network is 

presented in section 2. Proposed methodology is explained in section 3. Experimental re-

sults are presented in section 4. Finally, the discussions and conclusions are drawn in sec-

tion 5. 
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CONVOLUTIONAL NEURAL NETWORKS (CNN) 

 

Convolutional Neural Networks (CNN) comprises various convolutional and pooling 

(subsampling) layers that resembles human visual system [22]. Generally, image data is 

fed to the CNN that constitute an input layer and produces a vector of reasonably distinct 

features associated to object classes in the form of an output layer. Between input and 

output layers there are hidden layers in the form of series of convolution and pooling lay-

ers followed by fully connected layers [23, 24].  

The main building block of a CNN is convolutional layer. The parameters of this layer 

include a set of learnable filters (or kernels), which have a small receptive field, but 

spread through the full depth of the input. Every filter is convolved along the width and 

height of the input volume and produces a two-dimensional feature vector of that filter. 

All the feature vectors generated through different filters are stacked together along the 

depth dimension to form an output volume of the convolution layer [23]. In order to con-

trol the number of free parameters in convolutional layers, the parameters are shared. 

The pooling layer is a form of non-linear down sampling applied to reduce the size of 

the feature vectors generated through convolution. The idea is to reduce the number of 

parameter required and number of computation required and therefore to control overfit-

ting. Several non-linear functions are available to perform pooling such as max pooling, 

min pooling, and average pooling [23].  Most common approach to apply pooling is be-

tween successive convolution layers. After a series of convolutional and pooling layers, 

finally the abstract-level reasoning is performed using fully connected layer. In this layer, 

neurons have full connections to all the activations in the previous layer, similar to classi-

cal Neural Networks [23]. There can be many fully connected layers before the final out-

put layer. 

Generally, CNN models are trained using two different approaches. In first approach, 

the network is trained from scratch with randomly initialized weights. In second approach 

a pre-trained network is used with fine tuning [25, 26].  

METHODOLOGY 

In this section we explain the network architecture used in this work and the training 

methodology. The input to the network is 128X128 Aerial images.  

Network architecture 

The network architecture developed in this research is shown in Figure 1. As we can 

see in this figure, the first layer of the network is input layer containing the input image. 

The convolutional layer COV1 takes the 3 bands (RGB) in the input image and produces 

6 different feature maps using a 5X5 kernel function. The convolution layer is followed 

by 2X2 max pooling layer (MP1 layer) with stride 2. 2X2 Max pooling reduces the di-

mensions of the image by taking the maximum value in a window at every depth slice in 

the feature map by 2 along both width and height. A stride of 2 indicates that the window 

is moved two pixels at a time. This condenses the information by reducing the features by 

half. Reducing the dimensions of the image reduces computation time and allows the 
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model to fit into GPU memory [27]. After first pooling layer we applied another layer of 

convolution (COV2 layer). This convolutional layer takes 6 output features from the pre-

vious layer as input and maps them to 12 feature maps using a 5X5 kernel function. The 

convolution layer is again followed by a 2X2 max pooling layer (MP2 layer) with stride 

2. This max pooling layer is followed by a fully connected layer (FC1 layer). As can be 

seen in Figure 3 the size of this fully connected layer is 8. We used dropout to prevent the 

network from over-fitting at this stage. Moreover, it helps network to learn fast. Accord-

ing to this technique, some units are randomly dropped along with their connections [28]. 

How many connections will be dropped off is decided by the percentage of dropout. In 

our research 50% of connections were randomly dropped off while training the network. 

Finally, the last fully connected layer (FC2) after the dropout layer gives the prediction 

for classification with the output size 4 because we have used four classes in this research 

namely, building, ground, road, and tree. Softmax was used after the final output layer. 

Softmax activation is the normalized exponential probability of class observations repre-

sented as neuron activations. It is used for the output layer to ensure that the sum of the 

components of output vector is equal to 1. Batch normalization was performed after every 

convolution to remove internal covariate shift [29]. To minimize the error an Adam opti-

mizer is used [30] because it requires little tuning of hyperparameters. The learning rate 

for the Adam optimizer is set at a constant 1e-3. Cross entropy [31] is used as the cost 

function. Rectified linear function [32] is used as an activation function. 

EXPERIMENTAL RESULTS 

Dataset 

The dataset used in this work comprises images captured by both optical and IR cam-

eras mounted on a UAV. The study area for this research is Port Mansfield, TX and data 

was captured on March 4-6, 2015. Figure 2 shows the mosaic created by IR images.  Fig-

ure 3 shows the google earth image of the study area along with the sample image cap-

tured by UAV in the inset. The UAV platform used in this work is Recon System™ (RS-

16) Unmanned Aircraft System. The aircraft is a multi-payload, long endurance system 

capable of performing safe and successful civil missions in remote locations. Details of 

the aircraft, payload, and operations can be found in [33]. The optical camera used in this 

work is FCBEH6300, 3.27 Megapixel, 20x Zoom, HD color block camera. The resolu-

Figure 1:  Network architecture used for scene understanding 
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tion of the captured images is 1920 x 1080. The thermal camera used in this research is 

FLIR TAU2 which is a long wave Infrared thermal Camera. The spectral band is between 

7.5 and 13.5 micrometer. The red circle in the Figure 3 shows the limit of our range based 

on the C2 radio link between the GCS and the RS-16, and the blue box shows the air-

space limitations of our COA. A sample image captured by UAV can also be seen in the 

inset. 

 

Figure 2: the mosaic of Infrared Imagery in our experiment 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of the study area on Google earth along with 

the sample image captured by UAV in the inset 
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Training of the network 

The network was implemented using TensorFlow [34] running on an NVidia 980Ti 

GPU. We used different combination of training and testing images for 5 different exper-

iments according to Table 1. 

 

Table 1.Number of images that we used in 5 different experiments 

experiments Training  

(number of Images) 

Testing  

( number of Images) 

Exp1:Opt-Opt 3505 1502 

Exp2:Opt-IR 5007 313 

Exp3:IR-Opt 313 5007 

Exp4:IR-IR  251 62 

Exp5: OptIR-IR 5258 62 

 

In the first experiment (Opt-Opt), 3505 optical images were used for training and 1502 

optical images for testing. In the second experiment (Opt-IR), 5007 optical images were 

used for training and 313 infrared imagery for testing.  In the third experiment (IR-Opt), 

313 IR images were used for training and 5007 optical images for testing. In the fourth 

experiment (IR-IR) 251 IR images were used for training and 62 IR images for testing. In 

the fifth experiment (OptIR-IR) 5258 optical and infrared images were used for training 

and 62 IR images for testing.  

Network testing and validation 

We tested and validated our algorithm on various numbers of optical and IR imagery 

according to Table1.  Figure 4 shows the training accuracy where horizontal axis repre-

sents number of steps and vertical axis represents accuracy. The network was trained with 

the dropout value of 50 which indicates that 50% connections were dropped off randomly 

from the fully connected part of the network while training. The average running time for 

each image is around 12 milliseconds. Figure 5 shows some of the optical and IR images 

in our dataset for four different classes which are building, road, ground and tree. We cal-

culated the overall and classwise accuracy according to equation 1.   
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TP TN

Accuracy
TP TN FP FN



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 


  (1)  

where TP is true positive, TN is true negative, FP is false positive and FN is false neg-

ative.   

The overall accuracy for five different experiments is listed in table 2. 

 

 

 

 

 

 

Figure 4: Training accuracy at dropout value 50 

Figure 5: Sample images from building, ground, road and tree classes in both optical (top) and IR (bot-

tom) dataset  
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Table 2: overall accuracy for five different experiments 

experiments Overall accu-

racy (%) 

Exp1:Opt-Opt 93.6 

Exp2:Opt-IR 90.75 

Exp3:IR-Opt 77.25 

Exp4:IR-IR  87.00 

Exp5: OptIR-

IR 

92.75 

 

The overall accuracy for the first experiment where it was trained and tested on optical 

imagery is 93.6%. In the second experiment which was trained on optical and tested in IR 

imagery, we reached the overall accuracy of 90.75%. While the network is trained on op-

tical imagery, it is able to learn the characteristic of IR images. However the opposite is 

not quite true. When trained on IR imagery and tested on optical imagery, the learning 

parameters are not quite transferable and we got the low accuracy of 77.25%. This is log-

ical because IR imagery have lower resolution and less features in comparison to optical 

imagery.  In the case that we train and test the network on IR images, the accuracy is 87% 

which is higher than previous experiment (training on IR and testing on Opt) but still it is 

lower than the first experiment. In the fifth experiment we added some of our IR imagery 

to the optical imagery that we used in the second experiment and we tested on another set 

of IR imagery. This time we reached the accuracy of 92.75%. In none of the experiments 

we used registered or correspondent optical and thermal imagery.    

Table 3 presents some difficult images for which our algorithm predicts accurately. As 

can be seen in Table 3, the network is able to predict well on some difficult images. One 

of the building images presented here is round shaped, and despite being not trained to 

predict round shaped buildings explicitly, the network was able to predict it well. In the 

ground images and one of the tree images mentioned in the table, there can be observed 

road like structures, but based on the dominant feature present in the image the network 

was able to predict it accurately. The road images presented in Table 3 have no proper 

boundaries but still network could detect the roads. 
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Table 3. Correctly classified images and their label 

Sample images Predicted 

Label 

  

Building 

  

Ground 

  

Road 

  

Tree 

 

Class wise Accuracy Assessment 

In this section we calculated class wise statistics to analyze the performance of our 

method on individual classes. We computed accuracy for all the classes as shown in Ta-

ble 4.  
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Table 4: Classwise accuracy for five different experiments 

experiments Building 

accuracy (%) 

Ground 

accuracy (%) 

Road 

accuracy 

(%) 

Tree 

accuracy 

(%) 

Exp1: 

Opt-Opt 

98 90 91 96 

Exp2: 

Opt-IR 

88 93 85 97 

Exp3: 

IR-Opt 

81 59 80 89 

Exp4: 

IR-IR  

84 87 77 100 

Exp5:  

OptIR-IR 

89 95 89 98 

 

From Table 4, it can be observed that building and tree classes have higher accuracy 

almost in all five experiments compared to ground and road. There are some false posi-

tives and false negatives observed in ground and road classes that are responsible for rela-

tively lower accuracy as compared to building and tree classes. Further investigations by 

looking at the images in the first experiment which are not classified correctly, revealed 

that few samples from ground are classified as road and vice versa. The reason is few 

samples in the road class are mud roads (dirt roads) that have similar texture with ground.  

Building detection has the lowest accuracy in the third experiment which is trained on 

IR and tested on optical imagery. By looking at figure 5 and comparing building classes 

in IR and optical imagery, it is obvious that optical images have richer features in com-

parison to IR images. Buildings in IR images are like a white box but in optical images 

the roof structure is more distinct. Therefore when the network is trained on thermal im-

agery it has fewer features to learn for building class and therefore when it is tested on 

optical imagery which more features it is less accurate. Road detection is less accurate o 

fourth experiment when it is trained and tested on IR imagery. However for class trees, in 

the fourth experiment we reached 100% accuracy. It shows that tree detection has the 

best results when it is trained and tested on IR imagery. This experiment proves that the 

CNN network is able to learn parameters across spectrum. This is beneficial when there 

are limitations on UAV payload or on the number of sensors that can be used simultane-

ously. According to our experiments optical sensors are the best for detecting buildings 

while IR sensors are the best for detecting trees. For ground and road classes that had 

similar features in our experiment, combining both IR and optical imagery in the training 

time will increase the accuracy for both classes.  
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CONCLUSION 

We presented a deep convolutional neural network framework for classification of 

UAV imagery with both optical and infrared sensors. Traditional methods require feature 

engineering to learn features explicitly. The main advantage of using deep learning is 

that, unlike traditional methods, it automatically learns features. Semantic outputs are 

generated to classify various objects such as building, tree, ground, and road without ad-

ditional translation. Our network architecture comprises series of convolution and pool-

ing layers followed by fully connected layers. We applied our network on optical imagery 

taken with UAV RS-16 from Port Mansfield, TX. The proposed architecture is able to 

predict the labels for the images captured by UAVs with different sensors.  We tested our 

network on the combination of different set of optical and IR imagery. This experiment 

proves that the CNN network is able to learn parameters across spectrum. According to 

our experiments optical sensors are the best for detecting buildings while IR sensors are 

the best for detecting trees. Although the images in our experiment are not registered in 

any sense, still our network is able to detect different classes across spectrum. When there 

is a limitation on UAV payload, we can use just one of the sensors at testing time and still 

reach a high accuracy.  
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