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ABSTRACT
This paper proposes a deep convolutional neural network ap-
proach to detect ice surface and bottom layers from radar im-
agery. Radar images are capable to penetrate the ice surface
and provide us with valuable information from the underlying
layers of ice surface. In recent years, deep hierarchical learn-
ing techniques for object detection and segmentation greatly
improved the performance of traditional techniques based on
hand-crafted feature engineering. We designed a deep convo-
lutional network to produce the images of surface and bottom
ice boundary. Our network take advantage of undecimated
wavelet transform to provide the highest level of information
from radar images, as well as multilayer and multi-scale op-
timized architecture. In this work, radar images from 2009-
2016 NASA Operation IceBridge Mission are used to train
and test the network. Our network outperformed the state-of-
the art accuracy.

Index Terms— Ice Boundary detection, Holistically
nested edge detection, Wavelet transform, Radar, Deep learn-
ing

1. INTRODUCTION

Earth’s rising temperature has a negative impact on subsur-
face mechanism of the earth polar regions which resulted in
accelerated loss of ice from Greenland and Antarctica. Mon-
itoring ice thickness and layers hidden beneath ice sheet is
very important especially for predicting flood and sea level
rise. Radar remote sensing images provide useful informa-
tion about the hidden sub layers of ice over large area. The
ice thickness can be estimated by calculating the distance be-
tween position of the ice surface and ice bottom layer in radar
imagery.

Edge detection techniques have been studied most exten-
sively and have a rich history in image processing and ma-
chine vision. Some traditional techniques, such as Sobel [1],
Canny [2], zero-crossing [3], Boosted Edge Learning (BEL)
[4], multiscale [5], and Structured Edges [6] frequently have
been applied for detecting boundaries. In particular, several
semi-automated and automated techniques have proposed for
ice thickness boundary detection in radar images [7, 8, 9,
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10, 11]. These methods include filtering and thresholding
techniques, statistical analysis of the signal [7], active con-
tour [8], Level-set technique [10], and graphical models [11]
to precisely detect the ice surface and the bottom boundary.
These traditional computer vision techniques are based on
hand crafted feature engineering and are not suitable for a
large and complex dataset.

In recent years, Deep Learning (DL) algorithms have
proved to be a new efficient technique to automatically learn
features from data in a hierarchical manner. DL boundary
detection techniques are mostly based on developing con-
volutional neural networks, such as N4-fields [12], Deep
Contour [13], Deep Edge [14], CSCNN [15], and Holistically
Nested Edge Detection (HED) [16] approach. Shen et al[13]
proposed new deep learning technique for contour detection.
They trained the network by partitioning contour patches into
subclasses and fitting each subclass by different model pa-
rameters based on divide-and conquer strategy. Bertasius et
al [14] exploited object related features as high-level cues for
contour detection. To achieve this goal they designed a multi-
scale network. Xie and Tu [16] proposed Holistically-Nested
Edge Detection (HED). This technique is end-to-end edge
detection technique, which is a type of Fully Convolutional
Neural Network (FCN) but HED algorithm takes advantages
of side outputs (multiple networks) which compensates the
lack of deep supervision in FCN. Also, HED algorithm is a
multiscale algorithm.

Motivated by fully convolutional network and deep super-
vision net in HED [16], we develop an end-to-end boundary
detection network in combination with undecimated wavelet
transformation technique for detecting ice layers in a large
dataset. Figure 1 shows the architecture of our technique.

2. METHODOLOGY

Our network consist of two parts; The first part is for de-
noising the radar images. The second part is multi-scale neu-
ral network architecture to extract the edge maps. Radar im-
ages suffer from speckle noise, a signal dependent granular
noise that degrades the quality of images [17]. The wavelet
transformation is an efficient technique for reducing speckle
noise in radar images. Wavelet transform provide the highest
effective detail of image by decomposing it at different levels.



Fig. 1. Deep hybrid wavelet network architecture for bound-
ary detection.

However, discrete wavelet transformation is translation vari-
ant and some important coefficients will be lost during trans-
formation. Due to this fact, undecimated discrete wavelet
transform (UDWT) [17, 18] is used at this research. The co-
efficients in the UDWT domain can be obtained by filtering
the original signal by using of the following functions:
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where l and h are the approximation (low level) and detail
signals, respectively. Also, j denotes the level of decomposi-
tion.

In the first phase of our method following procedure is
performed:

1. Smoothing the images: median filter and Savitzky-
Golay filter [19] are used to smooth the images. The
second one is used to smooth a noisy signal whose fre-
quency span (without noise) is large. The performance
of this filter is much better than standard averaging
filters, because this filter preserves the relevant high
frequency components of signal, and minimize the
least square error by filtering a polynomial frame of
noisy data.

2. Decomposing the image A into wavelet sub-bands
S(ε)i,A: Where i is decomposition level and(ε) de-
notes the detail sub-bands such as horizontal, vertical
or diagonal detail. We carried the decomposition up to
level 3.

3. Thresholding: The minimum and maximum value of
coefficients of each detail sub-band at each level are de-
termined by using the thresholding method, which pre-
served all low level informations less than a threshold.
All low level pixels at each level provide the general
information of image with the highest effective details.

4. Enhanced directional smoothing is applied at each de-
tail sub band at each level S(ε)i,A to protect the edges,
based on the statistical relationship between the central
pixel and its surrounding pixels.

5. Reconstruction is performed by using inverse undeci-
mated wavelet transformation.

In the next phase, the multi-layer prediction network
is made by training multiple independent networks. This
multiple layer with various scales produce better results
by combining the information of each side-output. In fol-
lowing, we denote the training set S = (Xn, Yn), n =
1, , N.Xn is initial provided image by UDWT and Yn =
ynj , j = 1, , |Xn|, ynj 0, 1, the predicted labels or the corre-
sponding ground truth binary boundary map for image Xn.
All standard network layer parameters is denoted as W, and
for M side-output layers associated with a classifier, corre-
sponding weights are denoted as w = (w(1), ..., w(M)). The
loss function of HED [16] is expressed as:
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Where lm are the side-layer losses on the side output of the
layer of m. The loss function is computed over all pixels in a
training input imageXn and target or edge map Yn. As a mat-
ter of fact, 90% of the ground truth is non-edge and the distri-
bution of edge and non-edge pixels is extremely biased, The
class-balanced cross-entropy loss function is used to make a
cost-sensitive loss function for biased sampling:
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Where Y− and Y+ denote the edge and non-edge ground
truth label sets, respectively. Sigmoid function operation is
used to calculate the equation Pr(yj = 1 | X;W,wm) on the
inner product smj = wm, fj between the side layer parame-
ters and the feature fj at position j, P (yj = 1 | X;W,wm) =
σ(smj ). Side-output predictions by using the weighted-fusion
are added to the network and simultaneously learned the fu-
sion weight during training. So, loss function becomes:

Lfuse(W,w, h) = Dist(Y, Y f ) (5)



Fig. 2. Radar Image.

Where Y fuseσ(
∑M
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m
s ) and h = (h1, ..., hM ) is the

fusion weight. Dist (Y, Y f ) is distance between the fused pre-
diction and the ground truth label map. The overall objective
function is written as follows:

LFinal(W,w, h) = Lfuse(W,w) + Lfuse(W,w, h) (6)

It is optimized using common Stochastic Gradient Descent
(SGD) training with momentum. The final unified output can
be obtained by aggregation the generated edge maps from
each side output and the weighed fusion layer:

Y Final = Average(Y fuse, Y
1
side, ..., Y

M
side) (7)

3. EXPERIMENTAL RESULTS

In this work, we have used the radar images provided by
NASA Operation IceBridge Mission from year 2009 for test-
ing and 2010-2016 for training the network. In the first exper-
iment, we used the pre-trained HED network with BSDS500
[20] which produced the F-measure = 0.73. In the next ex-
periment, we trained the network with the ice images (2010-
2016), which as expected the results reached a higher accu-
racy of boundary detection (f-measure = 0.751). Our deep
hybrid undecimated wavelet network by training the network
with ice data set from 2010 to 2016 provide the highest per-
formance (0.771). We also compared this technique with two
traditional techniques, canny and multiscale gradient magni-
tude (MSGM) technique [5]. The results are summarized in
table 1.

3.1. Training With NASA Operation IceBridge Mission
dataset

The hyper-parameters used in this implementation include:
mini-batch size 10, learning rate (1e−6), loss-weight αm for
each side-output layer 1, momentum 0.9 of the fusion layer
weights 1/5, weight decay 0.0002, number of training itera-
tions 10,000; divided learning rate by 10 after 5,000. To eval-
uate this algorithm, 820 images were used for training and

Fig. 3. The result of ice surface and bottom boundary detec-
tion

Table 1. The results of boundary detection techniques
Techniques Precision Recall F-measure
Canny[2] 0.741 0.721 0.727
MSGM[5] 0.739 0.702 0.721
HED[16] 0.742 0.717 0.730
HED-ICE 0.782 0.722 0.751

Deep Hybrid net 0.801 0.742 0.771

100 images for testing. Ground-truth imgaes have been pre-
pared by manualy labeling the images by human. The input
and output images are shown in Figure 2 and Figure 3 .

3.2. Assessment

To evaluate the performance of our technique we calculated
precision, recall, and F-measure on our testing dataset.Precision
is the fraction of detections that are true positives rather
than false positives, and recall is the fraction of true posi-
tives that are detected rather than missed. F-measure is the
weighted harmonic mean of precision and recall.The bal-
anced F-measure (β = 1) is used.

The performance of our techniques (Deep hybrid net)
in comparison with Canny[2], MSGM[5], HED[16], pre-
trained with BSDS500 dataset (HED), and HED trained on
Ice RADAR dataset (HED-ICE) is listed in table 1. Our deep
hybrid network achieved the highest F-measure accuracy
(0.771).

4. CONCLUSIONS

Here we presented a deep hybrid wavelet network for detect-
ing ice surface and bottom boundaries from radar images. We
reached the F-measure of 0.77 on the NASA Operation Ice-
Bridge Mission dataset. Our experimental results in compar-
ison to the state-of-the-art techniques showed the efficiencyy
of our technique.
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