
AUTOMATIC ICE THICKNESS ESTIMATION IN RADAR IMAGERY BASED ON 

CHARGED PARTICLES CONCEPT 
 

Maryam Rahnemoonfar
1
, Member, IEEE, Amin Abbasi Habashi

2
, John Paden

3
, Geoffrey C. Fox

4
 

 

1. Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 

2. Department of Surveying Engineering, University of Isfahan 

3. Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 

4. School of Informatics and Computing, Indiana University, Bloomington, IN 
 

 

ABSTRACT 

Accelerated loss of ice from Greenland and Antarctica has 

been observed in recent decades. Ice thickness is a key 

factor in making predictions about the future of massive 

ice reservoirs and can be estimated by calculating the 

exact location of the ice surface and bottom in radar 

imagery. Identifying the locations of ice boundaries is 
typically performed manually which is a very time 

consuming procedure. Here we propose a novel approach 

which automatically detects the complex topology of ice 

surface and bottom boundaries based on charged particle 

concept. Here we first applied anisotropic diffusion to 

remove the noise and enhance the image. At the second 

step, we detected the contours in the image based on 

Coulomb's electrostatic law and the assumption that each 

pixel is an electrically charged particle. The final ice 

surface and bottom are detected based on the projection 

profile of the contours. The results are evaluated on a 

large dataset of airborne radar imagery collected during 
IceBridge mission over Antarctica and show promising 

results with respect to hand-labeled ground truth. 

 

Index Terms—Remote sensing, image analysis, radar 

 

1. INTRODUCTION 

Thus far, serious damages have been caused to our 

environment by global warming. In recent decades, 

accelerated loss of ice from Greenland and Antarctica has 

been observed [1]. The melting of polar ice sheets and 

mountain glaciers, potentially leading to the flooding of 
coastal regions and putting millions of people around the 

world at risk, has a significant influence on sea level rise 

and ocean currents. Precise calculation of ice thickness 

therefore is very important for sea level and flood 

monitoring. Usually, human experts in order to identify 

ice and bedrock, mark ice sheet layer and bedrock by 

hand, which is a very time consuming and tiresome task 

and may create errors. To provide important information 

about ice sheet thickness, the multichannel coherent radar 

depth sounder was used during the IceBridge mission [2]. 

In this work the images are the CReSIS standard output 
product [3] and by using pulse compression, synthetic 

aperture radar (SAR) processing, and multi-looking they 

are formed. The complete processing details are provided 

in Gogineni et al. [4].   

For layer finding and ice thickness in radar images, 

several semi-automated and automated methods have been 

introduced in the literature [5] [6][7][8][9]. Crandall et al 

[5] used probabilistic graphical models for detecting ice 

layer boundary in echogram images. The extension of this 

work was presented in [6] where they used Markov-Chain 
Monte Carlo to sample from the joint distribution over all 

possible layers conditioned on an image. A Gibbs 

sampling instead of dynamic programming based solver 

was used for performing inference. The problem with 

using graphical models is that it needs a lot of training 

samples (around half of the actual dataset) which can be 

very time-consuming to be labeled manually by a human. 

In another work, Gifford [7] compared the performance of 

two methods, edge based and active contour, for 

automating the task of estimating polar ice and bedrock 

layers from airborne radar data acquired over Greenland 

and Antarctica. They showed that their edge-based 
approach offers faster processing but suffers from lack of 

continuity and smoothness that active contour provides. 

Mitchell et al [8] used a level set technique for estimating 

bedrock and surface layers. However, for each single 

image the user needs to re-initialize the curve manually 

and as a result the method is quite slow and was applied 

only to a small dataset. This problem was fixed in [9] 

where authors introduced a distance regularization term in 

the level set approach to maintain the the regularity of 

level set intrinsically. Therefore, it does not need any 

manual re-initialization and was automatically applied on 
a large dataset.  

In this paper a novel contour detection method, which 

called ElFi method, is developed to automatically identify 

the ice and bedrock layers in a large dataset of radar 

imagery. In this approach, an electrically charged particle 

plays a role of a pixel that has electrostatic interaction 

with other neighboring particles/pixels. The grayscale 

intensity of the pixel will represent electrical charge of 

each particle indirectly. After setting some rules to create 

similar characteristics from electrical charges into each 

pixels, the electrical field computed result for each pixel is 
bound to count as edges of image. To improve the quality 

of counter detection, the images were first enhanced by 

anisotropic diffusion [10] and the final layers were results 

for calculating the local maxima in the projection profile. 



After this introduction, the details of the proposed method 

will be discussed in section 2. Experimental results will be 

discussed in section 3. The results are evaluated in section 

4. 

2. METHODOLOGY 

Our method consists of three main steps:1- anisotropic 
diffusion to remove the noise and enhance the quality of 

the image while preserving the edges. 2- ElFi method 

which is our proposed contour detection algorithm based 

on the theory of electrostatic and 3- projection profile to 

extract the layers of ice surface and bottom from the 

output of contour image.  

 

2.1. Anisotropic Diffusion 

Radar imagery suffers from low signal to interference and 

noise ratios (SINR) due to a) signal attenuation while 

traveling through ice, b) radar clutter energy, and c) 

thermal noise and occasional electromagnetic interference. 
It is necessary to remove noise prior to any contour 

detection algorithm. However most of the enhancing 

techniques, in addition to removing noise will affect the 

quality of edges and contours. Here we used anisotropic 

diffusion technique [10] which remove the noise effect 

while preserving the contour’s quality.  

 

In the diffusion equation, the diffusion coefficient c is 

considered as a constant independent of the space 

location. The anisotropic diffusion equation is: 

 

{
𝐼𝑡 = 𝑑𝑖𝑣(𝑐(𝑥, 𝑦, 𝑡)∇𝐼)

𝐼𝑡 = 𝑐(𝑥, 𝑦, 𝑡)∆𝐼 + ∇𝑐. ∇𝐼
 (1)  

 

where div is divergence operator, ∇ is the gradient 

operator and ∆ is the Laplacian operator. if we presume c 

(x, y, t) as a constant, the isotropic heat diffusion equation 

will be: 
 

𝐼𝑡 = 𝑐∆𝐼 (2)  

 

Later, this method undergone smoothing filter within a 

region in preference to smoothing across the boundaries 

by setting the conduction coefficient in the interior to be 1 

and 0 at the boundaries of each region. Therefore, the 

blurring occurs separately in each region with no 

interaction between regions, which these region 

boundaries would remain sharp. 

 

2.2. ElFi Method 

To detect the boundary of ice surface and bottom layers, 

we developed a novel contour detection technique based 

on electric field (ElFi). Most of the pioneering methods in 

contour detection are based on quantifying the presence of 

a boundary at a given location in the image. The Roberts, 

Sobel, and Prewitt operators detect edges by convolving 

an image with given operators. The Canny method [11] 

uses non-maximum suppression and hysteresis 

thresholding steps to model sharp discontinuities in a 

given image. Moreover, there are several unique and 

novel researches on edge detection methodologies so far. 
As an example, the method used in [12] is based on theory 

of universal gravity to perform edge detection. Therefore, 

as an inspiration, we used Coulomb's Law of electrostatic 

force to extract the image contours. It is believed that 

having both attractive and repulsive forces as a unique 

characteristic of charged particles will improve the 

contour detection performance in images.  
In the ElFi method, every pixel is assumed to be an 

electrically charged particle that has electrostatic 

interaction with other neighboring particles.  Initially, by 

comparing the pixel characteristic with particle 

characteristic, it can be seen that each particle in the real 

world has two characteristics: firstly, it has a small charge; 

secondly, the charge can be positive or negative. The pixel 

values in grey level image vary between 0 and 255 and 

they are always positive value. Therefore, in the first step, 

pixel values will be transferred to a range more similar to 

electrically charged particles according to equation 3: 

 

𝑞𝑖 =
2𝑝𝑖 − 2𝑛 + 1

2𝑛+1 − 1
 (3)  

 

where 𝑝𝑖 is the grey level value of pixel i and 𝑞𝑖 is the 
equivalent electrical charge for that pixel. n is the number 

of bits in the image. 

Then, the both force types, be it attractive or repulsive, 

specifies the electric field direction used for contour 

detection. The electric field of a point charge, which is 

located in the center, can be obtained from Coulomb's 

law:  

 𝐸⃑ 1 =
𝐹 

𝑞1

  (4)  

where 𝐸⃑ 1 is electric field of 𝑞1 particle affected by 

surrounding particles in the 𝑞1 neighborhood.  

This equation is computed for every neighbor of central 

pixel. The differential electric field for two neighbor 
particles is calculated according to equation 5: 

 ∆𝐸𝑖(𝑄𝑖) =
|𝑄𝑖 − 𝑞1|

|𝑟𝑖|
2

𝑟 𝑖
|𝑟𝑖|

  (5)  

 

where 𝑄𝑖 is the electric charge of the neighbor i and 𝑞1 is 

the electric charge of central pixel. Finally, the vector sum 

of all electrical fields is used to calculate the magnitude of 

signal variation and to detect image contours. For 

example, for a 3*3 kernel in the image, the equation 5 

would be in the following form: 

 

𝐸⃑ = ∑ ∑
|𝑄(𝑠, 𝑡) − 𝑄(𝑖, 𝑗)|

𝑑𝑄(𝑠,𝑡),𝑄(𝑖,𝑗)
2  

𝑗+1

𝑡=𝑗−1

𝑖+1

𝑠=𝑖−1

  (6)  

 

    Figure 1b shows the result of applying the ElFi 
technique on the enhanced SAR image (Figure 1a) where 

the top layer is the ice surface and bottom layer is the ice 

bottom which can be a bedrock or sea surface.  

 



 
(a) 

 
(b) 

Figure 1: (a) Enhanced SAR image by Anisotropic diffusion, (b) 

the result of ElFi technique 

 

2.3. Projection profile 
As it can be seen in figure 1b the image contours are 

highlighted where the ice surface and bottom have 

brighter values. To extract the exact ice surface and 

bottom boundaries, we calculated the the local horizontal 

projection profile on every 5 pixels’ column. The two 

local maximum in the projection profile (Figure 2) depicts 

the location of ice surface and bedrock. 

 
Figure 2: Horizontal projection profile for local vertical columns 

 

3. EXPERIMENTAL RESULTS 

We applied the proposed approach on the 2009 NASA 

Operation IceBridge Mission. The images have a 

resolution of 900 pixels in the horizontal direction, which 

covers around 50km on the ground, and 700 pixels in the 

vertical direction, which corresponds to 0 to 4km of ice 

thickness. We applied our method on total of 323 images 

and compared the results with the ground truth. The 

ground-truth images have been produced by human 

annotators. Figure 3 shows the results of our approach 

with respect to the ground-truth. Figure 3a shows the 
original image. Figure 3b shows the result after 

anisotropic diffusion. As it can be seen in this figure, the 

image is enhanced while the edges are preserved. This 

stage is necessary for reducing the noise. At the next step, 

the ElFi method was applied on the enhanced image. As it 

can be seen in figure 3c, ElFi method detects contours in 

the image. To highlight the ice surface and bottom 

boundaries, the projection profile of the ElFi result was 

calculated. Figure 3d shows our final results. Figure 3e 

shows the ground-truth results acquired by manually 

picked layers. The output of our approach shows a 

satisfactory results compared to the manually picked 
interfaces.     

To evaluate the performance of our approach, we 

calculated precision (P), recall (R), and F-measure as 

follow: 

 R =
Tp

Tp + FN
 (7)  

 

 P =
TP

TP + FP
 (8)  

where TP is true positive or correct result, FP is false 

positive or unexpected result, FN is false negative or 

missing results, and TN is true negative. Precision 

measures the exactness of a classifier and recall measures 

the completeness of a classifier. They can be combined to 

produce a single metric known as F-measure, which is the 

weighted harmonic mean of precision and recall. The F-

measure defined as:  

 

 F =
1

𝛼
1
𝑃

+ (1 − 𝛼)
1
𝑅

 (9)  

 

captures the precision and recall tradeoff. The F-measure 
is valued between 0 and 1, where larger values are more 

desirable.  

Table 1 shows the average precision, recall and F-measure 

on our entire dataset.  

 

Table 1: The result of our approach on 2009 NASA 

Operation IceBridge Mission 

 Precision 

 

Recall 

 

F-measure 

Our results 0.84 0.79 0.81 

 

4. CONCLUSION 

In this paper we developed a novel approach which 

automatically detects the complex topology of ice surface 
and bottom boundaries based on Electric field (ElFi). Here 

we first applied anisotropic diffusion and enhance the 

image while preserving the edges. At the second step, the 

contours were detected based on Coulomb's electrostatic 

law and the assumption that each pixel is an electrically 

Vertical edge of the image 
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els co
u
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charged particle. The final ice surface and bottom were 

detected based on the projection profile of the contours. 

The results were evaluated on a large dataset of airborne 

radar imagery collected during IceBridge mission over 

Antarctica and we reached high accuracy of 81% with 

respect to hand-labeled ground truth. 
 

 
Figure 3: The result of our approach. a) original image, b) the 

enhanced image after anisotropic diffusion, c) detected contours 
with ElFi technique, d) detected ice surface and bottom after 

projection profile, e) ground-truth 
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